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Abstract
The analysis of the abundance of radiocarbon samples through time has become a pop-
ular method to address questions of demography in archaeology. The history of this
approach is marked by the use of the Sum of Probability Distributions (SPD), a key
methodological development that first allowed researchers to visualize the abundance
of radiocarbon samples on a calibrated temporal scale. However, the lack of a math-
ematical definition hinders the use of SPD in a proper statistical framework. Recent
developments of model-based approaches have allowed a more rigorous statistical
analysis of the abundance of radiocarbon data. Despite these advances, thesemethods
inherit from the SPD an interpretation of the abundance of samples as a probability dis-
tribution. In this workwe propose a change of perspective by treating radiocarbon data
as count data. We present an approach that models the expected number of samples
occurring at each year. We argue that this model provides more interpretable param-
eters and better accounts for the uncertainty in the number of samples. The perfor-
mance of the proposed approach is evaluated through simulations and compared to an
alternative state-of-the-art approach. Our new method is competitive with the state-
of-the-art model. Furthermore, we demonstrate the computational burden of using
the SPD as summary statistics under an approximate Bayesian computation analysis
and propose more efficient summary statistics. Finally, we use a dataset of radiocar-
bon samples from Ireland and Britain to provide an application example. The results of
these analyses are largely congruent with previous work on the same dataset except
in revealing an earlier start of the Neolithic demographic expansion.
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Introduction2

The development of radiocarbon dating (Libby et al., 1949) has revolutionized the study of3

the past, finding applications in archaeology, geology, paleobiology, and paleoclimatology (Bronk4

Ramsey, 2008; Carleton and Groucutt, 2021; Taylor, 1995). As this technique became a standard5

in research, the accumulation of dated samples has led to the investigation of sample abundance6

over time, addressing various questions related to environmental processes (changes in sea level,7

forest fire frequency, or fluvial activity; Geyh, 1980; Pierce et al., 2004; Thorndycraft and Benito,8

2006), as well as studying population size changes in humans and other species (e.g. Broughton9

andWeitzel, 2018; Rick, 1987) and ecological interactions (Marom andWolkowski, 2024). There10

is a growing interest in the analysis of radiocarbon sample abundance, notably fueled by the11

recent availability of extensive 14C databases (e.g. Bird et al., 2022) and the development of new12

statistical methods (reviewed in Crema, 2022).13

Until very recently, the analysis of radiocarbon data abundance relied predominantly on the14

Sum of Probability Distributions (SPD). The SPD is derived by aggregating the posterior distribu-15

tions for the calibrated age of each sample in the dataset. However, the interpretation of the SPD16

encounters a main challenge because it lacks a precise definition of its underlying meaning. De-17

spite speculation by some authors on the meaning of such sums of probabilities, a formal mathe-18

matical definition is notably absent (e.g. Carleton and Groucutt, 2021; Crema, 2022, ; also see the supplementary text S.1)19

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Carleton and Groucutt, 2021; Crema, 2022, also see the supplementary text S.1). Despite this20

lack of a clear interpretation, the SPD is considered informative regarding changes in radiocarbon21

sample abundance over time. Nevertheless, the absence of a formal model hinders the full use of22

this intuition, as there is no established measure of the significance and uncertainty associated23

with variations in the SPD.24

In recent years, significant progress has been made with the introduction of model-based25

methods, as extensively reviewed by Crema (2022). This advancement has opened up new av-26

enues for analyzing the abundance of radiocarbon dates, enabling the testing of models, mak-27

ing model comparisons, and estimating model parameters. However,
::
in

:
these innovative ap-28

proaches still heavily rely on the SPD or a probabilistic interpretation thereof. In these models,29

radiocarbon dates are conceptualized as independent samples drawn from a probability distri-30

bution, with the expectation that the distribution’s shape mirrors that of the normalized SPD.31

Such models serve either to generate pseudo-observed data or as the foundation for inference32

(Carleton, 2021; Crema and Shoda, 2021; Porčić et al., 2020; Timpson et al., 2020).
:::::
This

:::::::::::
assumption33

:::::::
implies

::
an

::::::::::
inmutable

::::::::::::::::
data-generating

::::::::
process

::
in

::::::
which

:::::
each

::::
new

::::::::::::
radiocarbon

:::::::
sample

::
is

::::::::::
randomly34

::::::
drawn

:::::
from

::::
the

::::::
same

::::::::::::
distribution. However, interpreting the SPD

::::::::
treating

::::
the

:::::::::::
abundance

:::
of35

:::::::::::
radiocarbon

:::::::::
samples as a probability distribution overlooks the inherent nature of radiocarbon36

data, which is essentially count data. The number of samples (whether total or within a specific37

period) is an outcome of the whole data-generating process, not a fixed parameter determined38

:::
set by the experiment or researcher. Consequently, models that assume a fixed number of sam-39

ples fail to fully account for the inherent uncertainty associated with the sampling process.40

In this study, we advocate for a departure from the use of the SPD ormethods derived from it41

in statistical inference for the analysis of radiocarbon data abundance. Instead, we
:::::::::::::
Furthermore,42

:::
this

::::::::::::
perspective

:::::::::
imposes

::
a
::::::
static

:::::
view

:::
of

::::
the

::::::::::::
abundance

::
of

:::::::::::::
radiocarbon

:::::::::
samples,

:::::::::::
attributing43

:
it
::::::
solely

:::
on

::::::::
factors

::::::
acting

:::
at

::::
time

::::
the

:::::::
sample

:::::
was

:::::::
formed

:
(
::::
e.g.

::::::::::
population

:::::
size,

::::::::::
intensitity

:::
of

::::
fire44

:::
use

:::
or

::::::
waste

::::::::
disposal

::::::::::
practices).

:::::::
Under

::::
this

:::::::::::
framework,

:::::
new

::::::::
samples

:::
are

:::::::::
expected

:::
to

::::::
come

:::::
from45

2
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:::
the

::::::
same

:::::::::::
distribution

:::::
and

:
a
::::::::::
statistical

::::::::::
reanalysis

:::
of

:::
the

:::::
new

:::::
data

:::::::
merely

:::::::
refines

::::
the

:::::::::::
estimation46

::
of

:::::
that

::::::::::::
distribution.

::::::::::
However,

::::
the

:::::::::::
generation

:::
of

:::::::::::::::::::
radiocarbon-dated

::::::::
samples

:::
is

::::::::::
influenced

::::
by47

:::::::
factors

::::::::
specific

::
to

::::
the

::::::
each

:::::::
sample

:
(
::::
e.g.

::::::::
research

::::::::::
question

::
or

:::::::::::
availability

:::
of

:::::::::::
alternative

:::::::
dating48

:::::::::::
procedures)

::::
and

::::::::
factors

::::
that

::::::::
depend

:::
on

:::
the

:::::
time

:::
of

::::
the

:::::::::
sampling

:
(
:::
e.g.

::::::::
damage

:::
or

:::::::::::
destruction

:::
of49

::::::::::::
archaelogical

:::::::::
heritage,

:::::
shift

:::
of

:::::::::
research

::::::::::
interests).

::::
The

::::::::::::::::
data-generating

::::::::
process

::
is

::::::::
mutable

:::::
and50

:::
we

::::::
argue

::::
that

::::
any

:::::
new

:::::
data

:::::::
should

:::::
lead

::
to

::
a

:::::::
revised

:::::::
model

::::
that

:::::::::::
integrates

::
all

::::::::
factors

:::::::::
affecting51

:::
the

::::::
entire

::::::::::::
radiocarbon

::::::::
record.52

::
In

::::
this

::::::
study,

:::
we

::::::::::
advocate

:::
for

:::
the

::::
use

:::
of

::::::::::::
model-based

:::::::::
methods

::::
that

::::::
more

::::::::::
accurately

:::::::::
describe53

:::
the

::::::::::::::::
data-generating

::::::::
process.

::::
We

:
propose a novel model that treats radiocarbon data as count54

dataand characterizes the expected number of samples per year,
:::::::::
allowing

::::
the

:::::
total

::::::::
amount

:::
of55

::::::::
samples

::
to

:::
be

:::::::::::
determined

:::
by

::::
the

::::::
model

:::::::
rather

::::
than

:::::::::
imposed

::
as

::
if
::
it

:::::
were

::::
part

:::
of

:::
an

:::::::::::::
experimental56

::::::
design. The parameters of this model offer

:::::::
provide

:
a natural interpretation in the context of the57

studied process,
::::::::::::::
characterizing

::::
the

:::::::::
expected

::::::::
number

::
of

:::::::::
samples

:::
per

:::::
year

::::
and

::::
can

::
be

::::::::::::
interpreted58

::
as

:::::::::::
combining

::
all

::::
the

:::::::
factors

::::
that

::::::
affect

::::
the

:::::::::::
abundance

:::
of

::::::::::::
radiocarbon

::::::::
samples. Inference within59

this model is executed within the approximate Bayesian computation framework, and its applica-60

tion to pseudo-observed data allows for an exploration of differences with approaches inspired61

by the SPD
:
a

:::::::::::::::
state-of-the-art

:::::::::::::
model-based

::::::::::
approach.62

To illustrate the application of our proposed model, we reanalyze a published dataset of ar-63

chaeological radiocarbon dates from Britain and Ireland (Bevan et al., 2017). This case study64

serves as an example of the practical application of our approach, shedding light on its potential65

advantages over the SPD. Our results are in congruence with those by Bevan et al. (2017), but66

provide formal statistical support to the conclusions.67

Material and methods68

Models for the abundance of radiocarbon samples69

Model of counts. In the newly proposed model, the radiocarbon-dated samples are represented70

as a vector R (refer to Table S1 for notation in the article). Each element Rt of vector R denotes71

the number of samples at each year t within a specified time range [tmin, tmax]. The abundance of72

radiocarbon samples is conceptualized as a Poisson distribution (Rt ∼ Poisson(λt)). This model73

offers a straightforward formulation with interpretable parameters: assuming that at each year74

t there were a potential number of items
::::::::
samples

:
nt that could contribute to the dataset with a75

probability pt , the rate parameter λt = ntpt represents the expected number of samples at year76

t . In the context of archaeological data, for example, nt would encompass all organic objects77

associated with or connected to human activity, qualifying as anthropogenic samples. The prob-78

ability pt encapsulates a multifaceted process, including sample deposition, preservation over79

time, discovery or sampling, and decision to conduct radiocarbon dating. Consequently, vector80

λ encapsulates this intricate data-generating process, with its values representing the expected81

values for vector R (see figure 1a and b for a visual representation).82

However, R is not directly observable because the true age of each radiocarbon sample is83

unknown. Radiocarbon dating provides the Conventional Radiocarbon Ages (CRA), also referred84

to as uncalibrated dates. The CRA values would correspond to the true dates if the environment85
14C proportion was constant through time and geography and equal to that of the atmosphere86

in 1950, if the true 14C half-life was Libby et al.’s (1949) estimate of 5730 years (Bronk Ramsey,87

2008), and if the 14C proportions were measured without error. In reality, these assumptions88

3
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do not hold. Thus, radiocarbon data has the form of vector R′, which contains the number of89

samples, R ′
u , dated at uncalibrated date u within a range [umin, umax] (figure 1c). The relationship90

between R and R′ is given by the calibration curve, as in well established Bayesian analysis of91

radiocarbon dates (Bronk Ramsey, 2008). Assuming that radiocarbon dating uncertainty can be92

modelled with a normal distribution, the radiocarbon age u of a sample of age t is modelled as93

u ∼ N
(
uc,t ,

√
e2c,t + e2CRA

)
, where uc,t and ec,t are the values of the calibration curve for time t94

and eCRA is the measurement error in the CRA for that sample. Using this normal distribution it95

is possible to model the observed number of uncalibrated dates (R′) from the expected number96

of samples contributed by each ‘calibrated’ year (λ).97

Changes through time of the abundance of radiocarbon samples. The model for the abundance of98

radiocarbon samples as described above is determined by the set of parameters λt in λ. In most99

cases, periods of hundreds if not thousands of years will be analysed, which makes models with100

large number of parameters (one λ per year). This is impractical because large amounts of data101

would be necessary to fit that many parameters and there would be a very likely risk of over-102

fitting the model. Instead, additional models can be used to determine the change of λ through103

time, assuming that consecutive years will have similar λ values. In this work, three models are104

explored. The first two are the exponential model (λt = λ0e
−rt , as in figure 1a) and the logistic105

model (λt =
kλ0

λ0+(k−λ0)e−rt ). These are simple models often associated to demographic processes106

and used in the context of the analysis of abundance of radiocarbon samples (e.g. Bevan et al.,107

2017). For a demographic interpretation of the changes in abundance of radiocarbon samples,108

the parameters of these models represent the initial population size (N0 = Cλ0), the carrying109

capacity (K = Ck ) and the growth rate (r ), with C being an unknown constant of proportionality.110

However, assuming that a single mathematical function governs the changes in λt over large111

periods of time might not be appropriate. Piecewise models can be used to set a different rela-112

tionship between λ and t at different periods. The whole range of time considered [tmin, tmax] is113

divided in m periods defined by m + 1 times t0, t1, ... , tm (with t0 = tmin and tm = tmax). Here,114

we consider a piecewise exponential model defined bym+1 parameters λt0 ,λt1 , ... ,λtm . Within115

each period x ∈ [1,m], λ changes exponentially with rate rx =
log(λtx )−log(λtx−1)

tx−tx−1
. For simplicity,116

we consider the specific case in which all time intervals are of the same length.117

Comparisons between two sets of radiocarbon data. Some research questions require the compar-118

ison of two sets of samples of radiocarbon data (e.g. comparison of two geographical regions, or119

different food sources on the same region). For two sets a and b, the total data is R = Ra + Rb.120

Each set of radiocarbon data can be modelled with a Poisson distribution: Ra
t ∼ Pois(λa

t ), Rb
t ∼121

Pois(λb
t ), and Rt ∼ Pois(λt) = Pois(λa

t + λb
t ). We define qt =

λa
t

λt
, which describes the proportion122

of category a contributing to the total amount of samples. Our interest here is to understand123

whether the relationship of the changes of λa
t and λb

t with time is determined by some common124

factors or if their histories are independent. We consider three scenarios for the relationship125

between two sets of samples. In the first scenario, that we name “independent”, λa
t and λb

t val-126

ues are independent. In the second scenario, that we name “interdependent”, parameters λt and127

qt determine λa
t = qtλt and λb

t = (1 − qt)λt . The third scenario, that we name “parallel”, is a128

special case of the interdependent scenario in which qt is constant through time. The depen-129

dency among parameters in these scenarios is obtained through conditional prior probability130

distributions among λa, λb and q (see below).131
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Figure 1 –Model for the abundance of radiocarbon samples (example). (a) A mathemat-
ical law determines the relationship between the expected number of samples per year
(λ, the rate parameter of a Poisson distribution) and time (t): in this example an exponen-
tial law with initial value λ0 = 1 at time t0 = 2450YBP (i.e. t = t0 − tYBP) and growth rate
r = 0.04. (b) Number of samples per year (true age) in the data set (R, not observable)
of one random realization of model in (a); that is, random draws from Poisson distribu-
tions with parameters in λ. (c) Number of samples per year (conventional radiocarbon
age, CRA) in the data set (R′); that is, random draws from Normal distributions with pa-
rameters determined by the calibration curve and ages in (b).

Model of probabilities. Previous works have considered similar models (e.g. exponential change)132

to describe a probability distribution of the age of a sample. A fixed number of draws from this133

distribution is assumed to constitute the data set of radiocarbon dates (Crema and Shoda, 2021;134

Porčić et al., 2020; Timpson et al., 2020). These “probability distribution” models, describe the135

change of probability π through time instead of the change of λ through time. In this model, πt136

5
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is the probability that a radiocarbon sample is from year t . For any of the models of counts, an137

equivalent model of probabilities can be obtained by setting πt =
λt

tmax∑
tmin

λt

, so the total probability138

of the model equals one for the period considered. It is important to note that by doing this nor-139

malization the model of probabilities has one degree of freedom less than the model of counts.140

For instance, the exponential count model has parameters λ0 and r , while the exponential prob-141

ability model is determined solely by r (there is a single possible value of π0 for each value of r ).142

Also, the probability model is restricted to the studied period (formally, the probability outside143

the range is zero), while the count model can be extrapolated beyond that period of time.144

Inference using approximate Bayesian computation145

Approximate Bayesian Computation (ABC) is a statistical approach to make model-based in-146

ference without the calculation of likelihoods (see Sunnåker et al., 2013, for a review). ABC is147

often used for inference under models with analytically intractable likelihoods, which is not nec-148

essarily the case for the models of abundance of radiocarbon samples (e.g. Crema and Shoda,149

2021). However, it has other advantages such as the fast implementation under different mod-150

els and priors, which is one of themain reasons for its use in this work (see below for a discussion151

of other reasons). In ABC, the calculation of the likelihood of a model is substituted by the sim-152

ulation of data under the model. The similarity between the real and simulated data reflects the153

likelihood of the model.154

Summary statistics. The similarity between the real and simulated data is typically evaluated by155

comparing several summary statistics of the data. Previous applications of ABC to the analysis156

of the abundance of radiocarbon samples used the values of the SPD at each year as summary157

statistics (DiNapoli et al., 2021; Porčić et al., 2020). In this work we also explore the alternative158

of using summary statistics based directly on CRAs (i.e. R′). Specifically we use: T , the total159

number of uncalibrated dates; Hui , the number of uncalibrated dates at interval [ui , ui − δ) (with160

values covering the whole period of analysis and ui+1 = ui + δ) and using several values of δ161

(10, 50, 100, 500); and ∆Hui , the difference between consecutive Hui and Hui+1 values. A visual162

example of Hui statistics is the histogram of CRA from Britain and Ireland in figure 2.163

In the case of real archaeological data, dates belonging to the same site are given a lower164

weight for the calculation of all these statistics. This is done to compensate biases due to large165

variance in sample size among sites that could reflect, for instance, differences in the resources166

or research questions of the teams working on them rather than the abundance of materials.167

These weights are calculated by using the binning procedure proposed by Shennan et al. (2013).168

The weight for each uncalibrated date is the inverse of the number of dates within the bin. For169

instance, all the dates within a bin count as a single sample for computing T . Here we have used170

a binning range of 100 years.171

In the case of the analysis of two sets of radiocarbon data, we define additional summary172

statistics. These additional statistics capture the relationship between the two sets in their abun-173

dance of samples or its change. This is captured by the calculation of the correlation and covari-174

ance between Ha and Hb, and between∆Ha and∆Hb (for sets a and b).175

Approximate Bayesian computation via random forests. Previous applications of ABC to the anal-176

ysis of abundance of radiocarbon samples have used the ABC rejection algorithm (DiNapoli et177

6
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Figure 2 – Conventional radiocarbon ages composing the dated archaeological record
from Britain and Ireland (Bevan et al., 2017). Histogram with number of radiocarbon
samples in bins of 100 (uncalibrated) years (samples from the same site are weighted
similarly to the procedure proposed by Shennan et al., 2013). This is a visual representa-
tion of summary statistics Hui with ui taking values from 9900 to 500 YBP and δ = 100.

al., 2021; Porčić et al., 2020). This algorithm represents the most basic way of performing ABC178

and presents several limitations respect to other algorithms proposed for the comparison of ob-179

served and simulated summary statistics. Here, we use ABC via Random Forests (ABCRF; Pudlo180

et al., 2016; Raynal et al., 2019), which uses the eponymous machine learning algorithm to learn181

the relationship between summary statistics similarity and posterior probability of the model or182

the parameters. In the learning step, random forests are grown from a training set constituted183

by a large number of simulations known as the reference table. One random forest is grown for184

each parameter or for each model comparison and they can be used to make predictions about185

the real data. An important advantage of this algorithm is that a lower number of simulations are186

required for inference (reducing the computational cost) and there is no need to set an arbitrary187

tolerance level.188

Simulation. The simulation of radiocarbon data requires to set a specific model for the relation-189

ship between λt with time (e.g. the logistic model) and the values of its parameters (e.g. λ∗
0, r∗ and190

K ∗, for the logistic model; where ∗ denotes simulation values). These will determine all values in191

λ∗, which are then used to simulate R∗ by sampling from Poisson distributions. The uncalibrated192

date u∗ for each sample of known date t∗ in R∗ will be simulated by sampling from a Normal193

distribution with mean and standard deviation taken from the CRA and error associated to t∗194

in the appropriate calibration curve (Shennan et al., 2013). This will result in R′∗. An example of195

this procedure is presented in figure 1. This simulation process is rather similar to the procedure196

proposed by Shennan et al. (2013) and widely used in other works. The main difference is that197

the total number of samples in the simulated data set depends on themodel, allowing to account198

for this additional source of stochasticity. The IntCal20 calibration curve (Reimer et al., 2020) is199

used throughout this paper.200

Evaluation of the proposed model and approach201

The performance of themethod can be evaluated on simulated data for which the generating202

model and parameter values are known. This is done by exploiting the properties of the random203

forest algorithm. Random forests are a collection of decision trees that are grown from random204

7
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subsets of the training data (the reference table in the case of ABC), in a processed called boot-205

strap aggregating or “bagging”. Because of this, for each simulation in the reference table there206

is a subsets of trees in the random forest that have been grown without the information of that207

simulation. That subset of trees can be used to make inferences for that simulation, which are208

called the “out-of-bag” (OOB) predictions. True values and OOB predictions can be compared to209

estimate the error of the method, without the need of an additional testing set. In the context of210

model choice, OOB error is used to provide confusionmatrices. In the context of parameter infer-211

ence, OOB predictions are used to calculate mean squared error and the correlation coefficient212

between true values and their corresponding OOB prediction.213

Choice of summary statistics. The reduction of the data to a set of summary statistics can produce214

loss of information for the ABC. Therefore, it is recommended to use a set of summary statis-215

tics that are informative about the models and parameters to be inferred. Using the SPD (as in216

DiNapoli et al., 2021; Porčić et al., 2020) is a logical choice since SPD is considered to be highly217

informative about the changes in abundance of radiocarbon samples. However, the calculation218

of SPD is computationally costly. Also, strictly speaking, the SPD is not a summary of the data219

but a combination of the data with the calibration curve. Here we propose an alternative set of220

summary statistics based on the CRA data as described above.221

It is important to determine if these summary statistics are as informative as the SPD for the222

inference and if there is a gain in computational time by using them. First, the computational223

time for the calculation of the two sets of summary statistics was measured in 300 simulated224

datasets of 1343 CRA dates. This simulated CRA datasets were generated by sampling 1343225

calibrated dates uniformly between 7000 and 5000 YBP and using a CRA error of 30 years for226

simulating their corresponding CRA. The bench-marking procedure compares the SPD calcula-227

tion as implemented in R package rcarbon (Crema and Bevan, 2021), and an implementation of228

the new set of statistics in R (de Navascués, 2024). Then, the performance of the two sets of229

summary statistics for ABC inferencewas also evaluated. A reference table of 20000 simulations230

was produced using the model of probabilities with probability changing exponentially between231

7000 and 5000 YBP (i.e. the same model used in the ABC example in Crema, 2022). The growth232

rate parameter, r , was sampled from a uniform prior distribution between −0.01 and 0.01. Two233

random forest models with 5000 trees were trained from this reference table, one using the SPD234

as predictors and another one using the new set of summary statistics (T , Hui and ∆Hui ).235

Model of probabilities versus model of counts. The effect of using a model of counts instead of236

using a model of probabilities is studied by generating one reference table from each of the237

two models under exponential change on the period from 7000 YBP to 5000 YBP. Parameter238

values are sampled from the following prior probability distributions: uniform between −0.005239

and 0.005 for r , and log-uniform between 0.005 and 5 for λ0. A condition of
2000∑
t=0

λ0e
−rt < 5000240

is imposed to avoid simulations with an unrealistic high value of samples. For each parameter241

value combination, r∗ and λ∗
0, two simulations are run, one for each of the two separate reference242

tables. The first simulation uses r∗ and λ∗
0 to simulate under the model of counts and the second243

uses only r∗ to simulate 1343 CRA dates from amodel of probabilities. Summary statistics based244

on the CRA data (T , Hui and∆Hui ) are calculated and random forests are trained for r and λ0 for245

the count model, and r and π0 for the probability model (note that the estimation of π0 is done246

for comparison with λ0 but is unnecessary in practice if parameter r has already been estimated).247
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In addition to the evaluation through the OOB predictions, a separate set of independent248

simulations (pseudo-observed data-sets, PODs) was produced to study the properties of the249

posterior distributions obtained under the two different models. These PODs were simulated250

in a model of counts with λ0 = 0.01, exponential rate change of r = 0.003, with starting time251

7000 YBP and final time 5000 YBP. Simulations were run until 300 PODs were obtained that con-252

tained exactly 1343 samples (the expected number of samples under that model). Conditioning253

the simulation to a specific number of samples was done in order to analyse those PODs with254

the reference tables from both models (counts and probabilities) since the probabilities model255

assumes a fixed number of samples. The first 300 PODs were used to estimate posterior proba-256

bility distributions for r under the model of counts and the PODs with 1343 samples were used257

to estimate posterior probability distributions for r under the model of probabilities.258

Case study: archaeological radiocarbon dates from Britain and Ireland259

In order to illustrate the approach presented in this work, we reanalyse data of archaeological260

radiocarbon dates from Britain and Ireland (Bevan, 2017). This data base comprises 30516 ra-261

diocarbon dates from 200 to 9580 uncalibrated YBP from Ireland (7797 entries), Scotland (6401262

entries), North-West England andWales (5333 entries), and South-East England (10985 entries).263

In more than three quarters of the entries, the taxonomic origin of the material is identified. The264

taxonomic level of this identification is heterogeneous across the data: sometimes identification265

is at species level but often it is only at genus or higher levels. Among the taxon identified, there266

are several food sources, such as as wheat (Triticum, 678 entries) and barley (Hordeum, 1102267

entries).268

The original article by Bevan et al. (2017) studies the change of human population size and269

usage of food resources based on those data. Our work is not intended as a thorough reanalysis270

of this dataset but as an illustration of themodel andmethod proposed. Therefore, we only focus271

on two questions: the global pattern of change in abundance of radiocarbon samples (interpreted272

as a population size proxy in the original article) and the relationship between the abundance of273

samples of barley and wheat through time.274

Estimation of population size changes in Britain and Ireland. For the analysis of the population275

size change in Britain and Ireland, we consider the three models described above: exponential276

change, logistic change and piecewise exponential change. The time period explored is restricted277

between 10000 and 500 YBP. For the exponential and the logistic models, the parameters λ0 and278

λf (value of λ at 500 YBP) were taken from a log-uniform prior distribution in the range [0.001, 12],279

conditional to histories of increasing λ (λ0 < λf ). For the logistic model, parameter k value was280

sampled from a log-uniform distribution in the range [λf + 0.001,λf + 12]. Rate of change r is281

obtained from the values of those parameters.282

In the piecewise exponential model there arem+1 parameters λ (λt0 ,λt1 , ... ,λtm ). The value283

of m is set to divide the analysed total range of ages in periods of approximately 400 years.284

Thus, for the range 10000 to 500 YBP, m = 24. The value of λt0 is taken from a log-uniform prior285

distribution in the range [λmin,λmax] and consecutive values λtx = max(min(ϕλtx−1 ,λmax),λmin)286

with ϕ taken from a log-uniform distribution in the range [0.1, 10] (as in Boitard et al., 2016).287

This way of sampling the evolution of λ through time reflects the prior belief that large jumps288

over a short period of time are unrealistic (this prior prevents changes larger that one order of289

9
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magnitude for consecutive λtx values). Theminimum andmaximum λ values for thewholemodel290

are λmin = 0.001 and λmax = 12.291

For each model, a reference table of 30 000 simulation was build
::::
built

:
taking parameter292

values from the prior distributions described above. Model choice and posterior probability for293

the observed datawere obtained throughABCRF, using 2000 trees for the training of the random294

forest and 2000 trees for the calculation of the posterior probability. The pertinence of the295

approach was evaluated in twoways. First, OOB prediction were used to calculate the confusion296

matrix to evaluate the general performance of the approach. Second, a visual evaluation of the297

goodness-of-fit of the model to the observed data is also provided: the variability of patterns298

produced by the different models is represented using Principal Component Analysis (PCA) of299

the summary statistics in the reference table, then the observed data set is projected into the300

PC space.301

A larger reference table of 100 000 simulation was used to estimate the parameters of each302

model. Random forest of 2000 trees were trained on log(λ0), log(λf ), log(k) for the exponen-303

tial and logistic model. For the piecewise exponential model random forest of 2000 trees were304

trained for log(λtx ) at each the 25 time points defining the periods and rx for each of the 24305

periods. Refer to the full description of the model and parameters above for more details.306

Testing the relationship between abundances of wheat and barley in Britain and Ireland. For the307

study of the abundances of wheat and barley, we considered a piecewise exponential model and308

explored the time range from 6000 to 500 YBP divided in m = 14 periods of approximately 400309

years. The model describes the abundance of radiocarbon samples of two categories: wheat (w)310

and barley (b). The samples were ascribed to these two categories following the same criteria as311

in Bevan et al. (2017). The relationship between the changes of abundance through time of these312

two categories was modelled according to the above mentioned independent, interdependent313

and parallel scenarios. All three scenarios are produced with the same model, which have 15314

parameters λw
tx and 15 parameters λb

tx ; the differences among scenarios reside in the conditional315

prior probability distributions.316

For the independent scenario, parameters λw
tx and λb

tx are sampled independently using the317

same procedure as described above. That is, λw
t0 is sampled from a log-uniform distribution in318

the range [λmin,λmax] and consecutive values λtx = max(min(ϕλtx−1 ,λmax),λmin) with ϕ taken319

from a log-uniform distribution in the range [0.1, 10]. For the interdependent scenario, parame-320

ters λtx (i.e. λ for the sum of both categories), are sampled with the same procedure; then qtx321

are sampled from a uniform distribution in the range [0, 1] which determines the proportion of322

categories λw
tx and λb

tx at each time t0, t1, ... , tm. Finally, the parallel scenario is a special case of323

the interdependent scenario, in which a single q value is taken from a uniform distribution in324

the range [0, 1] and the proportion of the two categories does not change through time. The325

minimum and maximum λ values for the whole model are λmin = 0.001 and λmax = 2.326

Implementation327

All the calculations presented in this work were done in R (R Core Team, 2021) with scripts328

(available in de Navascués, 2024) that use: package extraDistr (Wolodzko, 2020) to sample from329

prior distributions; package rcarbon (Crema and Bevan, 2021) to simulate CRA; packages Hmisc330

10
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(Harrell Jr, 2022), moments (Komsta and Novomestky, 2022) and weights (Pasek, 2021) to calcu-331

late summary statistics; and package abcrf (Marin et al., 2022) to perform ABC analyses. Simula-332

tions are run in parallel using doParallel (Microsoft Corporation and Weston, 2022b), doSNOW333

(Microsoft Corporation and Weston, 2022a) and doRNG (Gaujoux, 2023).334

Results335

The choice of model and summary statistics for ABC inference336

We evaluated the performance of two distinct sets of summary statistics. One set comprises337

the values of the SPD for each year, while the second set is calculated from counts of uncali-338

brated dates as detailed in the Methods section. Summary statistics based on counts of uncali-339

brated dates offer a significant computational advantage, being approximately 250 times faster340

to calculate. Despite this difference, both sets of summary statistics demonstrate very high ac-341

curacy in inference with no discernible difference in statistical results (Figure 3).342
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Figure 3 – Influence of choice of summary statistics on the estimation of parameters.
Out-of-bag (OOB) estimates of the exponential growth rate, r , compared to the true
value from simulations in the reference table. The ABC was performed either using: (a)
the SPD as summary statistics, or (b) a set of summary statistics calculated from the count
of CRA. The performance is very similar despite the much higher computational cost of
using the SPD.

We also evaluated the use of two different models, referred to as the model of probabilities343

and the model of counts, each offering a distinct perspective on the process generating radiocar-344

bon data. Notably, parameter inference under the model of probabilities demonstrated higher345

accuracy compared to the model of counts (see Figure 4). This discrepancy in accuracy primarily346

stems from larger errors observed in simulations with low values of r or λ0 (refer to Figure 4a347

and b), which consequently results in less data for the model of counts.348

For PODs generated under the model of counts (λ0 = 0.01, r = 0.003, with a range of 2000349

years), analysis under either themodel of probabilities or themodel of counts yielded comparable350

levels of error (mean squared error of 9.57 × 10−9 and 9.31 × 10−9 respectively for parameter351

r ). However, it’s worth noting that the 95% credibility intervals were wider for the model of352

counts (refer to Figure 5b). Furthermore, nominal coverage was more accurate for the model of353

probabilities (see Figure 5a).354
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Figure 4 – Parameter inference differences between modeling counts and modeling
probabilities. Out-of-bag (OOB) estimates compared to the true value from simulations
in the reference table. (a) and (b) model of counts. (c) and (d) model of probabilities. (a)
and (c) growth rate, r . (b) and (d) initial value (λ0 or π0).

Analysis of archaeological radiocarbon dates from Britain and Ireland355

Estimation of λ as a proxy of population size. Three models (exponential, logistic and piecewise356

exponential) were explored to explain the change in abundance of radiocarbon samples from357

Britain and Ireland. According to the OOB estimates from the training set, the ABCRF approach358

is able to identify the piecewise exponential model with very little error and the logistic model359

with a somehow higher error. However, the exponential model is difficult to identify, being often360

wrongly classified as the logistic model (table S2). For the real data, the piecewise exponential361

model has a clear superior fit than the two alternativemodels, with theABCRF analysis indicating362

a high posterior probability for that model (0.869). The PCA of the summary statistics diversity363

across simulations further reveals the lack of fit of the exponential and logistic models, which364

are unable to reproduce the patterns found in real data (figure S1b and c). Parameter estimates365

under the piecewise model reveal a history of fluctuations of λ through time closely resembling366

the SPD curve (figure 6a). Five of the periods (6833–6438, 6042–5646, 4854–4458, 4458–4062 and367

1688–1292 YBP) have estimates of the rate of change r with credibility intervals excluding the368

zero, indicating a significant increase of λ during those periods (figure 6b).369
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Figure 5 – Influence of the model on the credibility interval width. (a) Quantile-quantile
plot of the actual and nominal coverage of 300 estimated posterior distributions esti-
mated from pseudo-observed data-sets. (b) Relative width of the 95% credibility interval
of the parameter r estimated under a model of probabilities or under a model of counts.
The histogram represent 300 values from pseudo-observed data-sets generated with a
model of exponential change with r = 0.003 and λ = 0.01.

Relationship between the abundances of radiocarbon samples from wheat and barley. The change370

in abundance of radiocarbon samples for wheat and barley was modeled using a piecewise ex-371

ponential model. Three different scenarios within this model were considered based on the de-372

gree of independence between the trajectories of the two cereals: the independent scenario,373

where both trajectories are completely independent; the parallel scenario, where both trajecto-374

ries change in parallel; and the interdependent scenario, where both trajectories are correlated.375

These three scenarios can be distinguished with relatively low error using ABCRF, as indicated376

by the confusion matrix (table S2). For the empirical data, the chosen scenario is the interde-377

pendent scenario, with a posterior probability of 0.863. Visual evaluation of the goodness of378

fit through Principal Component Analysis (PCA) shows that the observed data falls within the379

expected diversity of summary statistics values for the interdependent scenario (figure S2). Pa-380

rameterλ estimates indicate that the abundance of both cereals sharply increased between 6000381

and 5500 years before present (YBP), then decreased until 4500 YBP, and increased again until382

3500 YBP, remaining stable with some minor fluctuations until 500 YBP (figure 7a). The relative383

abundance of the two cereals (q) also changed dramatically around 5500 YBP, with wheat be-384

ing more abundant in the first period and barley becoming more abundant in the second period385

(figure 7b).386

Discussion387

Performance of the new approach388

The present work proposes a novel approach to analyzing the abundance of radiocarbon389

samples. This new method moves away from using the Sum of Probability Distributions (SPD),390

which we regard as useful only for visualization purposes. Insteadof trying to fit models to the391

SPD
:::::::::::
assumption

:::::
that

:::
the

:::::::::::
abubdance

:::
of

::::::::::::
radiocarbon

::::::::
samples

::::
can

:::
be

::::::::::
described

::::
with

::
a
:::::::::::
probability392

::::::::::::
distribution,

::::::
which

:
is
::::
the

:::::::::
currently

:::::::::::
widespread

:::::
view

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Carleton, 2021; Crema and Shoda, 2021; Porčić et al., 2020; Timpson et al., 2020)393
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Figure 6 – Parameter estimates under piecewise exponential model. (a) Abundance of
dated archaeological record through time measured as the expected number of dated
archaeological samples per year (λ). Solid blue line indicate the point estimate (λ̂) and
dashed lines indicate 95% credibility interval. The Sum of Probability Distributions (grey
line) of the data is plotted for reference. Note log scale for λ. (b) Rate of change in the
abundance of dated archaeological record through time (r ). Solid blue line indicate the
point estimate (r̂ ) and dotted lines indicate 95%CI. Periods in which the 95%CI for r does
not include zero (horizontal grey line) are marked with an asterisk (*)

:
a

::::
light

::::
blue

:::::::
vertical

::::
band.

:
.
:::::::
Instead, we propose using a model based on the Poisson distribution

:::::::
Poisson

:::::::
draws to repre-394

sent the number of samples per year. We argue that this model offers a parametrization with a395

natural interpretation, where λt is the expected number of radiocarbon samples at year t , and396

aligns better with the inherent nature of the data.397

Through simulations, we demonstrate that analyzing data under this model allows for ac-398

curate inference of the expected abundance of radiocarbon samples and the rate of change in399

these abundances (figure 4a and b). Themodel of probabilities exhibits lower errors in estimating400

equivalent parameters (figure 4c and d). While this may appear desirable, we view it as a failure401

to capture the full uncertainty of the data. The model of probabilities treats the total number402

of samples, T , as a sample size controlled by the researcher. This model implies an experimen-403

tal process where the researcher decides to sample T times from a probability distribution. In404

reality, the researcher has no control over the number of radiocarbon samples in the dataset,405

which usually derives from the accumulation of prior research in the geographical area of inter-406

est. By fixing the total number of samples, a strong dependence is generated on the modeling407
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Figure 7 – Parameter estimates under the interdependent scenario for cereals
(Hordeum/Triticum). (a) Estimate of the expected number of Hordeum and Triticum sam-
ples through time (λ). Solid blue line indicate the point estimate (λ̂) and dashed lines indi-
cate 95% credibility interval. The Sum of Probability Distributions (grey line) of Hordeum
(solid line) and Triticum (dashed line) are plotted for reference. Note log scale for λ. (b)
Proportion of Triticum (q) expected among the samples. Solid blue line indicate the point
estimate (q̂) and dotted lines indicate 95%CI.

of abundance of samples from different periods. Consider the initial abundance (expressed as λ0408

or π0) and the final abundance (λf or πf ) of samples. If we consider the extreme case in which409

all dates occur close to t = 0, the model of counts will provide a good estimate of parameter λ0410

but will have little information to estimate λf , this is why we observe larger error for estimates411

of λ when the true value is small (figure 4b). However, the model of probabilities will provide an412

accurate estimate of πf , despite having little information from samples of that period, since all413

the information is coming from the initial period and the constraints of the model.414

The credibility interval coverage obtained under the model of probabilities is closer to the415

nominal value than that of the model of counts (figure 5). This difference likely arises from the416

limitation of ABCRF, which estimates the marginal posterior probability distribution of each pa-417

rameter independently, rather than their joint posterior probability distribution. Since the model418

of probabilities has only one parameter in the example, its posterior probability distribution is419
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easier to estimate. For future applications, it would be interesting to consider other simulation-420

based inference approaches that estimate the joint distribution of parameters and provide con-421

fidence intervals with better coverage properties (Rousset et al., 2017, and unpublished results422

by F. Rousset).423

An additional advantage of the model of counts is that simulations of the reference table can424

be reused to analyze different datasets. The generation of a reference table requires to assume425

a calibration curve and some prior distribution for the parameters, ;
:
however, the number of426

samples is not fixed. Therefore, a reference table generated with non informative priors could427

be reused for dataset for which the same calibration curve are appropriate. This will save com-428

putational time and reduce the carbon footprint of the analyses (Lannelongue et al., 2021).429

The use of the SPD values as summary statistics for simulation-based inference is a good430

idea only at first sight. The intuition that SPD is informative about the abundance of radiocarbon431

samples is confirmed independently of the type of model assumed (e.g.DiNapoli et al., 2021, and432

figure 6a). However, the computational cost of calculating the SPD offers no gain compared to433

simpler summaries of the CRA data. In addition, transforming the data into the SPD assumes434

a specific calibration curve for the data. This could be appropriate for many cases, but we can435

also imagine cases in which a proportion of samples might have some intake of marine carbon in436

an uncertain proportion. In a Bayesian framework, it would be straightforward to propose prior437

distributions for the proportion of marine carbon intake of those samples and incorporate their438

uncertainty on the calibration by doing so. In such a case, summarising the data with a different439

calibration curve could be prone to produce misunderstandings.440

Application of the new approach to data from Britain and Ireland441

The main features of the demography of Britain and Ireland inferred in the original analysis442

by Bevan et al. (2017) are recovered in our analysis. Three periods (Early Neolithic, around 6000443

YBP; Late Neolithic/Early Bronze Age, approximately between 5000 and 4000 YBP; and Early444

Medieval, around 1500 YBP) of demographic expansion show strong support, with distinct es-445

timates (i.e. non-overlapping 95% credibility intervals) of λ at the beginning and end of those446

periods and positive estimates of the growth rate r with 95% credibility intervals excluding zero447

(figure 6). Some other features discussed by Bevan et al. (2017) have lower support, such as the448

decline after the peak at the Early Neolithic, the decline after the Bronze Age and its recovery:449

95%CI of r include zero, but they have non-overlapping 95%CI of λ. What it is noteworthy is450

the significant increase during the period 6833–6438 YBP which was not noted by Bevan et al.451

(2017). This observation of an early increase in λ suggests a demographic expansion that starts452

several hundreds years before the peak around 6000 YBP. This last result highlights the impor-453

tance of using the model-based statistical analyses developed in the last few years by several454

authors (reviewed by Crema, 2022) over visual evaluation of SPD curves.455

The analysis of abundances ofwheat and barley reveals that they are not independent of each456

other. Their total abundance (figure 7a) appears to follow the samefluctuations as thewhole data,457

suggesting that demographic size could determine the amount of wheat and barley cultivated,458

potentially generating this correlated pattern of abundance between these two cereals. Bevan et459

al. (2017) already noticed the similarity between demography (i.e. abundance of all samples) and460

starchy food plants abundance, which is congruent with them being staple food. Regarding the461

relative abundance of these two cereals, the notably result is the transition of higher abundance462

of wheat in the Early Neolithic to the larger abundance of barley thousand years later. Relative463
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abundance might have fluctuated afterwards, but the largely overlapping confidence intervals464

prevent any meaningful discussion of these results.465

Combining radiocarbon data with other types of data466

The analysis of the abundance of radiocarbon data in archaeology has primarily focused on467

its use as a proxy for demography. The validity of this proxy has been thoroughly discussed in the468

literature (e.g. Rick, 1987; Williams, 2012). Some criticisms regarding the statistical uncertainty469

of the SPD (e.g. Carleton and Groucutt, 2021) are addressed in the recent works developing470

model-based approaches such as the one presented here. Biases arising from archaeological471

research (questions drive which sites or periods are studied and which samples are dated) might472

be attenuated by the weighting procedure proposed by Shennan et al. (2013). Taphonomy can473

also be modelled to correct for different preservation across samples (Contreras and Codding,474

2023). However, some differences in the abundance of samples might be driven by changes in475

human practices (e.g. use of fire dependent on climate or cultural changes in the way to dispose476

objects) that might bemore difficult to take into account. In that sense, it is important to highlight477

that the proposed model studies the abundance of radiocarbon samples. Its application to study478

demography (or any other process) requires understanding the limits of the data and model used479

and acknowledging those caveats. Nevertheless, inferring the past demographic dynamics is an480

important component for understanding the prehistoric populations and, despite its limits, the481

abundance of radiocarbon samples seems to be informative about it.482

In order to produce more robust inferences of demography, the use of multiple sources of483

information has been suggested (Crema and Kobayashi, 2020; Hinz et al., 2022). The approach484

that we propose here could be developed for this purpose. First, the Poisson law proposed to485

model the number of artifacts that a given year contributes to the archaeological record can be486

extended to other types of dated archaeological remains. The key to this is to properly model the487

uncertainty about the age of those remains (i.e. the equivalent to the calibration curve for the488

radiocarbon samples). For dating methods based on the natural sciences (radiocarbon and opti-489

cally stimulated luminescence dating) there is a wealth of information about how to model those490

uncertainties. For other methods of assigning dates (numismatic, aoristic approaches) proper sta-491

tistical models can also be proposed (e.g. Crema, 2024).492

Analyzing the data under an ABC approach may also facilitate the combination with other493

sources of information such as genetic diversity. ABC is widely used in population genetics to494

obtain demographic inferences, including in studies using ancient DNA from prehistoric sites.495

Simulating both archaeological and genetic data based on the same demographic trajectory can496

be envisioned and would allow the combination of two disparate sources of information. Never-497

theless, it must be noted that population genetics “demographic” inference provides a measure498

of genetic drift (the so-called effective population size) rather than census population size. As499

with for the abundance of radiocarbon samples, there are good reasons to assume that the ef-500

fective population size offers information about demography, but the interpretation of results501

should bear in mind the limits of the data and the models used. For instance, there is ancient502

DNA data from Britain and Ireland (e.g. Patterson et al., 2022) that could be used jointly with the503

radiocarbon data from Bevan et al. (2017) to infer demography. However, the genetic structure504

and admixture of those people would need to be taken into account to disentangle their effects505

on genetic diversity from that of population size. Studies trying to combine archaeological and506

genetic data will need to address the question of whether they are indeed inferring a common507
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process, two separate processes with irreconcilable differences, or, more likely, an intermediate508

situation.509

Conclusion510

The analysis of the change in frequency of radiocarbon samples though time is an attractive511

and useful approach to address diverse questions in archaeology and other sciences of the past.512

A key development for that analysis was the SPD, which allows to visualize the abundance of513

radiocarbon samples in the natural (calibrated) time scale, yet it lacks a formal mathematical defi-514

nition. We argue that the SPD has constrained later developments on the statistical inference of515

:::
use

:::
of

::::
the

::::
SPD

::::
has

:::::
lead

::::::
recent

:::::::::::::
model-based

::::::::::::
approaches

:::
to

:::::::::::::
conceptualize

::::
the

:
abundance of ra-516

diocarbon samples , misleading them to suboptimal concepts
::
as

::
a

::::::::::
probability

::::::::::::
distribution,

:::::::
which517

:::
we

:::::::::
consider

:
a
:::::::::::
suboptimal

:::::::
model

:
for the underlying dataand models. We propose a new model518

for the conceptualization of abundances of radiocarbon samples, allowing powerful statistical519

inference of parameters that have a natural interpretation, as the number of expected samples520

contributed by each year to the total.521
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Supplementary Materials679

S.1. An interpretation of Sum of Probability Distributions (SPD) as the expected number of680

samples per year681

As far aswe know, a formalmathematical interpretation of the SPD is lacking, as the algorithm682

defining it lacks a rigorousmathematical justification for aggregating independent probability dis-683

tributions. Nevertheless, we find it more intuitive to interpret the SPD as the expected number684

of samples from each year rather than as a probability distribution. Consider the meaning of the685

SPD value at a specific year. Each sample in the radiocarbon data set has a probability of being686

‘sampled’ in that year, given by the posterior probability distribution from the calibration process.687

Consequently, each sample actually originating from that year can be viewed as a ‘success’ and688

samples from other years as ‘failures’ akin to independent binomial trials. The sum of these suc-689

cesses, i.e., the number of samples from that year, follows a Poisson-binomial distribution. The690

expected value of a Poisson-binomial distribution (i.e. the expected number of samples at that691

year) is the sum of the probabilities of each trial, representing the SPD value for that year. This692

rationale provides the insight that the SPD somehow quantifies the expected number of sam-693

ples for each year, suggesting that the analysis of radiocarbon abundance data should focus on694

modeling the number of samples at each year. However, SPD values from different years are not695

independent, rendering the Poisson-binomial model inapplicable to the entire SPD. Remarkably,696

our proposedmodel, utilizing Poisson distributions to model the number of samples at each year,697

yields inferences closely aligning with SPD values (figure 6).698

Table S1 – Notationa

meaning
CRA conventional radiocarbon age
Hu number of samples in an interval starting at uncalibrated year u and ending at uncalibrated year

u + δ
k upper bound value of λ under a model of logistic change
nt number of objects in year t that can potentially become a radiocarbon sample in the data set
N normal or Gaussian distribution
pt probability of an object to become a sample in the radiocarbon data at year t
q ratio between λ of subset a (λa) and λ for the total dataset
r growth rate of λ under a model of exponential or logistic change
R vector of number of radiocarbon samples for each year between tmin and tmax

Ra vector of number of radiocarbon samples for each year between tmin and tmax for the subset of
samples a

Rt number of radiocarbon samples at year t , an element of vector R
R′ vector of number of radiocarbon samples with CRAs between umin and umax

R ′
u number of radiocarbon samples with CRA = u, an element of vector R′

t time in years (calibrated)
T total number of samples in the radiocarbon data
u uncalibrated radiocarbon year (measurement unit for CRA)
δ size of the interval of uncalibrated years used to calculate summary statistics of the data
∆Hu Difference between values Hu and Hu+δ

λ vector of expected number of radiocarbon samples for each year between tmin and tmax

λt expected number of radiocarbon samples at year t , an element of vector λ
πt probability that the age of a sample is t

a We follow the convention of marking vectors with bold font.
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Table S2 – Confusion matrix
:::::::::
Confusion

::::::::
matrices

true model prediction error rate
exponential logistic piecewise

exponential 15067 14873 60 0.498

logistic 4631 25277 92 0.157

piecewise 132 324 29544 0.015

independent interdependent parallel
independent 26348 2480 588 0.104

interdependent 980 25290 3146 0.140

parallel 619 2479 26318 0.105
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Figure S1 – PCA for goodness-of-fit evaluation. PC values from 3000 randomly selected
simulations are plotted for each model for the first six axes. The projection of the ob-
served summary statistics is represented by an asterisk (*). The first six principal compo-
nents capture 97.06% of the variance in the data and are presented by consecutive pairs
in panels (a), (b) and (c).
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Figure S2 – PCA for goodness-of-fit evaluation, cereals. PC values from 3000 randomly
selected simulations are plotted for each model. The projection of the observed sum-
mary statistics is represented by an asterisk (*). The first six principal components cap-
ture 99.60% of the variance in the data and are presented by consecutive pairs in panels
(a), (b) and (c).
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