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Abstract  21 

Geometric morphometrics revolutionized domestication studies through the precise 22 

quantification of the phenotype of ancient plant and animal remains. Geometric morphometrics 23 

allow for an increasingly detailed understanding of the past agrobiodiversity and our ability to 24 

characterize large scale ancient phenotypes has led to what can be named archaeophenomics : 25 

the large scale phenotyping of ancient remains. This review describes advances in the 26 

bioarchaeological study of domesticated species and their wild relatives where their phenomes 27 

are quantified through geometric morphometrics. The two main questions addressed by 28 

archaeophenomics are i) taxonomic identification, including domestication signature, and ii) 29 

the inference of the spatio-temporal agrobiodiversity dynamics. Archaeophenomics is a 30 

growing field in bioarchaeology of domestic species that will benefit in the near future from 31 

advances in artificial intelligence and from an increasing interest in multiproxy approaches 32 

combining morphometric data with e.g. isotopes or archaeogenomics. 33 

 34 
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1. Introduction 35 

Domesticated species have played a major role in the development of Charles Darwin’s work, 36 

being the subject of the first chapter of the ‘Origin of Species’ (Darwin, 1859) and later of a 37 

dedicated book, ‘The variation of animals and plants under domestication’(Darwin, 1868) 38 

where he described the mechanisms of variation in domestic species. With his work, Darwin 39 

contributed to the understanding of the morphological changes that occurred during the long 40 

process of domestication. For most domesticated species, modern breeds and varieties today 41 

present a huge morphological diversity reflecting millennia of human selection for many 42 

purposes (e.g. food production, work, aestheticism) in various environmental conditions. While 43 

the study of the current domestic diversity is mainly carried out in agronomic research, with 44 

breed and varietal improvement using molecular breeding programs, a large amount of research 45 

has been done to explore the past diversity of domestic species whose remains are found in 46 

increasing numbers in archaeological deposits. The methodological development in 47 

morphometrics have revolutionized, qualitatively and quantitively, the study of the phenotype 48 

of those remains. Today we have reached a state where the use of several tools, including 49 

morphometrics, have allowed phenome (i.e. the full set of observable traits) quantification of a 50 

large number of archaeological specimens leading to a renew in the study of archaeological 51 

remains of domestic species. We here coin the word archaeophenomics for such large-scale 52 

quantification of phenotypic data from archaeological specimens. Archaeophenomics, i.e. 53 

phenomics of the past, is an emerging field that will likely become a standard for future 54 

bioarchaeological studies. This neologism fulfils the needs to express the new realities of 55 

bioarchaeological domestication studies. 56 

From phenomics to archaeophenomics 57 

Phenomics, the analysis of high-dimensional phenotypic data, is part of the ‘-omics’ revolution 58 

as genomics or proteomics. Phenomics is the new generation of acquisition and analysis of 59 

phenotypic data based on techniques which allow a very large amount of quantitative characters 60 

to be acquired and processed with minimal handling time. Assessing the full phenome of an 61 

organism is illusional (Houle, Govindaraju, & Omholt, 2010) and this is even more true in 62 

bioarchaeology. Archaeological remains of plants and animals are often altered by 63 

taphonomical processes (e.g. preservation, fragmentation). Despite these inherent constraints 64 

associated with studying archaeological material, the large quantity of remains allows for large-65 

scale morphometric analyses. 66 
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Morphometrics is one of the many tools of phenomics. The ‘morphometric revolution’ 67 

corresponding to the development of geometric morphometrics (GMM), i.e. the study of forms 68 

in multi-dimensional spaces, allow more in-depth investigation of morphological changes 69 

(Adams, Rohlf, & Slice, 2004; Rohlf & Marcus, 1993). The main improvement of geometric 70 

morphometrics compared to the so-called ‘traditional morphometrics’ is that biological forms 71 

are no longer captured by sets of independent measurements of lengths or angles, but by sets of 72 

point coordinates, improving dramatically the capture of the geometric complexity of these 73 

objects (Bookstein, 1991; Kuhl & Giardina, 1982; Rohlf & Marcus, 1993). Morphometric 74 

analyses are often the only available approach for studying the morphology of ancient remains 75 

with a fine-scale resolution, while suffering less from preservation limitations than e.g. ancient 76 

DNA and offering much better possibilities for being carried out on a large scale at a limited 77 

cost, in both time and money. This is especially true for plants whose remains are often found 78 

charred, a condition strongly detrimental to DNA preservation and which generally prevents 79 

the analysis of these remains, at least with current aDNA techniques (Nistelberger, Smith, 80 

Wales, Star, & Boessenkool, 2016). Most of the time, once a specimen is recovered a 81 

morphometric analysis can be performed, as long as the structures grabbing the geometrical 82 

features analysed are present. While it is always better to analyse complete specimens, 83 

fragmented remains can even be studied using a restricted version of the initial protocol since 84 

fragmentation does not necessary prevent taxonomical identification (e.g. Cornette et al., 2015; 85 

Owen et al., 2014, Durocher in press). Geometric morphometric techniques are therefore 86 

particularly well adapted to bioarchaeological studies and are a growing field in the discipline. 87 

 88 

Archaeophenomics appears to be as a major breakthrough in bioarchaeology, with a drastic 89 

quantitative change in the scale of the number of specimens and populations that can be 90 

analysed, and a qualitative improvement provided by an increased resolution of the analyses 91 

paired with a better description of the morphometric variation with improved detection and 92 

visualisation of the shape variation. 93 

Aim and scope of the review 94 

Here we provide an exhaustive review of bioarchaeological studies using archaeophenomics, 95 

through geometric morphometrics, to study archaeological remains of domestic species. We 96 

restricted our review to studies published in international journals (i.e. excluding grey 97 

literature), only those focusing on domestic species and that include archaeological specimens. 98 



 4 

This therefore explicitly excludes: studies of commensal species (e.g. rodents (Cucchi, 2008; 99 

Cucchi et al., 2014; Valenzuela-Lamas, Baylac, Cucchi, & Vigne, 2011)); studies focusing only 100 

on the ancestors and modern relatives of the domestic populations (e.g. Late Glacial horse 101 

(Bignon, Baylac, Vigne, & Eisenmann, 2005), rabbit (Pelletier, 2019)); and finally the 102 

numerous studies focusing only on modern domestic specimens (e.g. Battesti et al., 2018; 103 

Bonhomme et al., 2017; Evin et al., 2022; Evin, Dobney, et al., 2015; Gros-Balthazard et al., 104 

2016; Hanot et al., 2021; Harbers et al., 2020; Neaux et al., 2020; Pelletier, Kotiaho, Niinimäki, 105 

& Salmi, 2020, 2021). Yet these studies are of prime interest for the understanding of ancient 106 

populations, they fall out of the scope of this review.  107 

 108 

2. Geometric morphometrics in archaeophenomics 109 

The development of geometric modern morphometrics (GMM) (Bookstein, 1991; Rohlf & 110 

Marcus, 1993) came as a response to the conceptual and methodological limits of traditional 111 

morphometric methods, such as a better ability to efficiently partition the size and the shape 112 

components of the form variation and the possibility of visualizing shape variation. Shape 113 

analysis, through geometric morphometrics, allows analysing microscale variation that could 114 

not otherwise be identified using traditional techniques. Two main geometric morphometric 115 

approaches are currently used in bioarchaeology (fig. 1): Procrustes approaches through the 116 

acquisition of landmarks and sliding semi-landmark coordinates and outline analyses using 117 

various methodologies (see below). In bioarchaeology, as in biology, objects are studied in two- 118 

or three-dimensions depending on the geometry and size of the remains. Until recently, all 119 

archaeobotanical remains appear to have been studied in 2D from digital images, though one 120 

recent publication used 3D X-ray-computed tomography to quantify watermelon seeds 121 

(Wolcott et al., 2021) (table 1). In addition, archaeobotanical remains are nearly exclusively 122 

studied through their outlines geometries using mainly either Elliptic Fourier transforms (EFT) 123 

(Giardina & Kuhl, 1977; Kuhl & Giardina, 1982) or natural/orthogonal polynomial equations 124 

(Rohlf, 1990) (table 1) and only few studies use landmarks and sliding semi-landmarks 125 

coordinates (Ros et al. 2014; García-Granero et al. 2016; Wolcott et al. 2021) (table 1). 126 

For animals, teeth are studied in 2D and the same applies to some postcranial bones (e.g. 127 

phalanges, and talus) although it is quite possible to study them in 3D (Hanot, Guintard, Lepetz, 128 

& Cornette, 2017; Haruda, 2017) (table 1). The same applies to mandible that are studied either 129 

in 2D (cat: (Vigne et al., 2016), dog: (Ameen et al., 2019)) or 3D (dog: (Drake et al., 2017)). 130 
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Skulls, which are geometrically more complex objects, are studied in 3D, either directly on the 131 

specimens using e.g. a Microscribe digitizer (Drake & Klingenberg, 2008; Geiger et al., 2017; 132 

Hanot et al., 2017) or through 3D model reconstruction obtained by CT-scanning 133 

(Schoenebeck, Hamilton-Dyer, Baxter, Schwarz, & Nussbaumer, 2021) or photogrammetry 134 

(dog: (Ameen et al., 2019)). So far, a single study really takes advantage of a CT-scanning 135 

technology to analyze the internal structure of the skull that is the inner ear morphometry 136 

(Clavel et al., 2021).  137 

 138 

<Figure 1> Example of geometric morphometric protocols applied to bioarchaeological 139 

remains. A Example of Procruste approaches used to quantify the morphometric variation of 140 

canid skulls with 3D landmarks. B Example of protocols for 2D outline analyses used to 141 

quantified the morphometric variation of barley grains. 142 

 143 
 144 

3. Domestic species studied with geometric morphometrics 145 

We identified a total of 71 studies among which 38 focus on animals and 33 on plants (fig. 2.A, 146 

table 1, SI table 1).  147 

For animals, only mammals have been studied (though a PhD thesis should be mentioned on 148 

chicken (Foster, 2018)), which also represent the large majority of domesticated animals. Ten 149 

species are listed and the most represented taxa are pig (N=16), followed by dog (N=9), equids 150 

(N=5, horse and donkey), caprines (sheep and goat) (N=5), camelids (N=3, guanaco and llama), 151 

and finally cat, and cattle with a single mention (table 1, fig. 2). Animal studies focus primarily 152 

on teeth (N=21), skull (N=10, cranium and mandible), in a much larger majority than 153 

postcranial bones (e.g. talus, phalanges or calcaneus) (SI-table 1). 154 
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For plants, only angiosperms are concerned and 14 species (or group of closely related species) 155 

are listed with grapevine that largely outnumber other species in terms of publications number 156 

(N=15), followed by olive (N=6), date palm (N=3) while all other species are only represented 157 

by a single mention (table 1). A higher number of studies is dedicated to dicotyledons (N=27) 158 

than to monocotyledons (N=6) and focus exclusively on fruits and seeds (SI table 1). 159 

  160 
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 161 

<Table 1> List of the reviewed publications. An extended version of the table, including 162 

research themes, employed methodology, and combination with biomolecular markers can be 163 

found in SI-table 1. 164 

Group Taxa References 

Mammals 

Pig 

(Balasse et al., 2016; Bartosiewicz et al., 2013; Bopp-Ito, Cucchi, Evin, 
Stopp, & Schibler, 2018; Cucchi et al., 2016, 2021; Cucchi, Fujita, & 
Dobney, 2008; Cucchi, Hulme-Beaman, Yuan, & Dobney, 2011; Dobney, 
Cucchi, & Larson, 2008; Duval, Cucchi, Horard-Herbin, & Lepetz, 2018; 
Duval, Lepetz, Horard-Herbin, & Cucchi, 2015; Evin, Flink, et al., 2015; 
Frémondeau, De Cupere, Evin, & Van Neer, 2017; Krause-Kyora et al., 
2013; Marom et al., 2019; Ottoni et al., 2013; Price & Evin, 2017) 

Dog 
(Ameen et al., 2019; Daza Perea, 2017; Drake, Coquerelle, & Colombeau, 
2015; Drake et al., 2017; Drake & Klingenberg, 2008; Fisher, 2019; Geiger 
et al., 2017; Manin & Evin, 2020; Schoenebeck et al., 2021) 

Caprines (sheep and goat) 
(Colominas et al., 2019; Haruda, 2017; Haruda, Varfolomeev, Goriachev, 
Yermolayeva, & Outram, 2019; Pöllath, Alibert, Schafberg, & Peters, 
2018; Pöllath, Schafberg, & Peters, 2019) 

Equids (horse and 
donkey) 

(Chuang & Bonhomme, 2019; Clavel et al., 2021; Cucchi et al., 2017; 
Hanot et al., 2017; Seetah, Cardini, & Barker, 2016) 

Camelids (guanaco and 
llama) (Hernández, L’Heureux, & Leoni, 2021) 

Cat (Vigne et al., 2016) 
Cattle (Cucchi et al., 2019) 

Monocotyledons 

Date palm (Gros-Balthazard et al., 2017; Sallon et al., 2020; Terral et al., 2012) 
Barley (Jérome Ros, Evin, Bouby, & Ruas, 2014) 
Millet (García-Granero et al., 2016) 
Wheat (Bonhomme et al., 2016) 

Dicotyledons 

Lemon (Grasso, Mavelli, & Fiorentino, 2018) 
Melon (Sabato et al., 2019) 

Grapevine 

(Bacilieri et al., 2017; Bonhomme et al., 2020; Bonhomme, Terral, et al., 
2021; Bouby et al., 2018, 2021; Figueiral et al., 2015; Mariotti Lippi et al., 
2020; Margaritis et al., 2021; Moricca et al., 2021; Orrù, Grillo, Lovicu, 
Venora, & Bacchetta, 2013; Pagnoux et al., 2015, 2021; Terral et al., 2010; 
Ucchesu et al., 2015, 2016; Valamoti et al., 2020) 

Olive 
(Bourgeon et al., 2018; Margaritis et al., 2021; Newton, Lorre, Sauvage, 
Ivorra, & Terral, 2014; Newton, Terral, & Ivorra, 2006; Terral et al., 2004, 
2021) 

Opium poppy (Jesus et al., 2021) 
Cherry (Burger, Terral, Ruas, Ivorra, & Picq, 2011) 
Pulses (grass pea, lentil, 
broad bean) (Tarongi et al., 2020) 

Watermelon (Wolcott et al., 2021) 
 165 

Since 2004, year of the first publication included in this review (Terral et al., 2004), the yearly 166 

number of published bioarchaeological studies on domestic animal and plant species using 167 

geometric morphometrics is steadily increasing (Fig. 1.B). 168 

 169 

 170 
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<Figure 2> Bioarchaeological archaeophenomic studies, concerning domestic species and 171 

using geometric morphometrics, represented by taxa (A) and year (B). A: relative frequencies 172 

of the different groups studied. B: Evolution of the number of studies per year. Details of the 173 

references can be found in table 1 and SI table 1. 174 

 175 

The number of phenomes now available greatly differs between species with grapevine coming 176 

out on top with a maximum of 2223 archaeological seeds having been quantified in one single 177 

study (Pagnoux et al., 2021). The number of papers published per year is still low compared to 178 

e.g. palaeogenomic studies (~1480 references obtained for a quick online search of the term 179 

“palaeogenomics” in google scholar the 11/02/2022). Numbers of studied individuals are 180 

usually lower for animals which are mostly represented by fewer individuals per archaeological 181 

assemblage. It should be noted, however, that the concept of ‘individual’ differs here between 182 

archaeozoology and archaeobotany, since an animal will be represented by single elements such 183 

as a cranium or a lower right third molar, while numerous studied individuals (e.g. seeds or 184 

fruit-stones) may come from a single plant individual. 185 

4. Main bioarchaeological research themes based on GMM data 186 

Archaeophenomics through geometric morphometrics is increasingly used for bio-187 

archaeological studies for two main purposes that are the taxonomic identification of the 188 

archaeological remains including the domestication signature, and to assess the 189 

agrobiodiversity variation in both time and space primarily related to processes of 190 

A
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colonisation-dispersal, adaptation, diversification and changes in husbandry or cultivation 191 

practices or cultural choices.  192 

 193 

Taxonomic identification and domestication signature 194 

A prerequisite of many bioarchaeological studies is to perform a taxonomical identification of 195 

the remains, either by identifying the taxa to which the specimen belongs and/or to identify its 196 

wild or domestic status. Archaeological remains are often fragmented or altered due to either 197 

taphonomic due to various anthropic and taphonomic processes (e.g. charring. butchery or 198 

culinary preparation) processes rendering their identification potentially delicate. Geometric 199 

morphometric protocols are now available to distinguish (more or less effectively depending 200 

on the study and model) morphologically close mammalian species of equids, bovids, sheep-201 

goats, camelids, canids, cats and pigs (table 1). Taxonomic identification of plant remains is 202 

even more challenging due to the larger number of species (or sub-species) potentially 203 

occurring at an archaeological site. Botanical studies dealing with taxonomic identification 204 

include cereals, such as barley, millet, einkorn and emmer, opium poppy, pulses, citrus, melon, 205 

watermelon, date palm and prunus species (SI table 1). For other remains whose species 206 

identification is unambiguous, the question of the wild and domestic status distinction and 207 

identification may arise. This is especially true for species that have a wild ancestor with a wide 208 

geographical range and for which the wild and domestic populations have coexisted for 209 

millennia. This is the case for nearly all species with the exception of those having an ancestor 210 

leaving in a restricted geographic area (e.g. sheep, goat and most cereals). This geographic 211 

proximity can also be source of hybridization between wild and domestic individuals as already 212 

documented from genomic and palaeogenomic data. for e.g. pig (Frantz et al., 2019), dog (Pilot 213 

et al., 2018), grapevine (Myles et al., 2011; Riaz et al., 2018) or date palm (Gros-Balthazard et 214 

al., 2017) or among individuals of distinct species as evidenced for north African date palm 215 

(Flowers et al., 2019) which can render their morphometric identification even more 216 

challenging. In addition, studies looking at bridging archaeological samples to modern breeds 217 

or varieties, or groups of them, are more often found for perennial clonal plants, that show an 218 

extended varietal diversity and for which varieties can theoretically persist substantially 219 

unchanged for centuries or even millennia through vegetative multiplication (e.g. grapevine, 220 

olive, Prunus species and date palm (table 1)). For non-perennial clonal organisms, such as 221 

animals, it seems that direct comparison to specific modern breeds has been done, so far, only 222 

for dogs (Geiger et al., 2017; Schoenebeck et al., 2021), and that such comparison can be 223 
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questioned as the intensification of selective pressures during the last centuries likely 224 

dramatically altered ancient morphologies. 225 

Another specificity of archaeobotanical remains compared to zooarchaeological ones is that 226 

remains are often found charred and that charring can affect their size and shape and therefore 227 

their taxonomic identification. An important effort has been made for multiple taxa to 228 

understand the effect of charring on the morphometric results and their interpretations (e.g. 229 

cereals (Bonhomme et al., 2017; Ros et al., 2014), grapevine (Bouby et al., 2018; Ucchesu et 230 

al., 2016), and olive (Terral et al., 2004)). 231 

A significant proportion of the domestic species whose remains are found during archaeological 232 

excavations have been the subject of geometric morphometrics and such approaches have been 233 

found effective for taxonomic identification of the remains. The many available protocols can 234 

now be adapted to nearby species not yet subjected to such studies. 235 

 236 

Documenting spatio-temporal variation of past agrobiodiversity 237 

A large number of archaeophenomic studies explore the morphometric spatio-temporal 238 

variation of domestic populations. Such studies span either long periods of time of several 239 

millennia (e.g. Pagnoux et al., 2021; Price & Evin, 2017; Terral et al., 2004), or a much shorter 240 

period of no more than a century (e.g. Drake & Klingenberg, 2008).  241 

Time and space are intertwined components of bioarchaeological studies. It is however possible 242 

to study them separately by comparing either diachronic populations of a single locality or 243 

synchronous populations of various geographic origins. 244 

The studies that explore the geographic variation between populations from a single chrono-245 

cultural period (SI-table 1) evidenced that both geographically near and far populations can 246 

show morphometric differences. In term of interpretations, a geographic structuration of 247 

synchronous populations may correspond not exclusively to local environmental adaptation, 248 

different husbandry/cultivation practices, cultural choices or distinct genetic lineages.  249 

Similarly, diachronic differences between populations originating from the same geographic 250 

area can reveal either changes in human practices, spread of new genetic stock, environmental 251 

variation, or drift. Such comparison between diachronic populations (SI-table 1) can reveal both 252 

long term variation, but also more abrupt morphological shift between periods. 253 

In comparison, fewer studies focus both on time and space (SI-Table 1). Generally, while 254 

absence of differences between assemblages cannot lead to the conclusion that they belong to 255 

similar populations, on the other hand, the existence of differences  allows to hypothesize the 256 

existence of distinct populations with at least limited cultural or genetic exchanges. As a 257 
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consequence, morphometric analyses can make only limited contribution to mobility studies, 258 

that can be better explored using e.g. biomolecular markers such as ancient DNA or isotopes. 259 

In the same way, phenotypic proximity does not necessarily reflect genetic proximity (i.e. 260 

phylogeny) due to natural or anthropic selection. During domestication, human populations 261 

have selected certain traits such as larger quantity of meat or of fruit size. In archaeophenomics 262 

studies, the target of human selection during domestication and subsequent diversification is 263 

not necessarily the target of the morphometric analysis. For cereals, grain size was likely 264 

intentionally selected, but not their shape, while for fruit stones neither size or shape were likely 265 

directly targeted, even if in some cases (e.g. at least for grapevine) seed and fruit measurements 266 

covariate (Bonhomme et al., 2020). Similarly, in mammals, it is unlikely that teeth, that are 267 

commonly studied and considered as a phenotypic marker of adaptation to natural or anthropic 268 

environment, were not likely the aim of human selection that primarily targeted primary (e.g. 269 

meat) or secondary products (e.g. milk, wool). In all these cases, where domestic and wild 270 

populations differ in size and shape of anatomical elements non targeted by selection, other 271 

evolutionary pressures and mechanisms such as drift, genetic hitchhiking or indirect selection 272 

(e.g. morpho-functional constraint) can be invoked. In addition, many anatomical structures are 273 

polygenic (e.g. Harjunmaa et al., 2012), or the genes involved are not known. Moreover, not all 274 

anatomical elements necessarily evolve in parallel, at the same rate or following the same 275 

direction (e.g. Geiger & Sánchez-Villagra, 2018).  276 

 277 

5. Multi-proxy approaches and future methodological developments 278 

Archaeobotanical remains are often conserved through charring which is detrimental to DNA 279 

preservation (Nistelberger et al., 2016) rendering the combination of such approaches with 280 

morphometric data impossible. This is however possible to the less frequently found 281 

waterlogged remains where DNA can be preserved and the results compared to morphometric 282 

data (Bacilieri et al., 2017; Bouby et al., 2021). 283 

For animals, several studies combined geometric morphometrics with ancient DNA (e.g. pig: 284 

(Evin, Flink, et al. 2015), dog (Ameen et al., 2019)), geometric morphometrics and isotopes 285 

(pig: (Cucchi et al., 2016; Frémondeau et al., 2017)), or the combination of the three approaches 286 

geometric morphometrics, ancient DNA and isotopes (pig: (Balasse et al., 2016)). Isotopic 287 

analyses are increasingly used in archaeobotany (e.g. Fiorentino, Ferrio, Bogaard, Araus, & 288 

Riehl, 2015), but not yet in combination with other approaches.  289 

Artificial intelligence is increasingly used in biology (e.g. Ching et al., 2018; Hassoun et al., 290 

2021) and archaeology (e.g. Bickler, 2021; Horn et al., 2021), but only few bioarchaeological 291 
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studies use yet such approaches (e.g. Miele, Dussert, Cucchi, & Renaud, 2020). Machine 292 

learning in general, and deep learning using convolutional neural networks in particular, will 293 

certainly help in the future for automatic data acquisition such as landmark coordinates (e.g. 294 

Devine et al., 2020), image post-treatment prior to outline analyses, and/or directly for binary 295 

(status) or multiple (species identification) classification tasks. In addition, the ever-growing 296 

motivation to share data and knowledge should drastically extent the chrono-cultural and 297 

geographic scopes of the studies allowing comparisons not possible before. This would be 298 

possible only after careful inter-operator and methodological comparisons (Evin, Bonhomme, 299 

and Claude 2021). Other future lines of research will also certainly focus on evo-devo 300 

perspectives (Bonhomme et al., 2020), form-function interactions (Harbers et al., 2020; Neaux 301 

et al., 2020) as well as further exploration of the genotype-phenotype relationships 302 

(Schoenebeck & Ostrander, 2013). 303 

 304 

6. Conclusion/perspectives 305 

Archaeophenomics through geometric morphometrics allows addressing questions regarding 306 

the micro-evolutionary processes that accompanied the long history of domestic species in an 307 

unprecedented way. Such approaches are increasingly used in bioarchaeology and are 308 

becoming one of the many approaches now available to us to study past populations. The future 309 

of phenotypic studies will require carefully thought, managed and open large-scale databases, 310 

precisely contextualised archaeologically, and combining the whole set of available 311 

approaches, if possible carried out on the exact same specimens. As for the relatively recent 312 

research fields of palaeoproteomics or palaeogenomics, this review shows that 313 

archaeophenomics definitely corresponds to a renew of domestication studies deserving a new 314 

terminology. This review attempts to list all the studies in the scope of archaeophenomics where 315 

the phenomes of domestic species are quantified through geometric morphometrics. The many 316 

approaches now available pave the way to future research expanding the diversity of studied 317 

species and the archaeological questions that can be addressed through archaeophenomics. 318 
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