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ABSTRACT
Predator-prey interactions have been a central theme in population ecology for the past century, but real-world data sets only exist for recent, relatively short (<100 years) time spans. This limits our ability to study centennial/millennial-scale predator-prey dynamics. We propose that regional radiocarbon databases can be used to reconstruct a signal of predator-prey population dynamics in deep time, overcoming this limitation. We support our argument with examples from Pleistocene Beringia and the Holocene Judean Desert.
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Introduction
[bookmark: _30j0zll]Predator-prey interactions are a fundamental topic in theoretical ecology  (May, 2001 [1974]), nature conservation (Johnson et al., 2019; Southall et al., 2019), and economics (Apedaille et al., 1994; Edwards et al., 2020). The dynamics of predator-prey populations exhibit multiple wavelengths, beyond the generational oscillations predicted by Lotka-Volterra models. For example, the well-known Canada lynx–snowshoe hare system oscillates on a decadal timescale, which may be linked to climatic processes operating on centennial to millennial scales (Hone et al., 2011; Yan et al., 2013). Similar multiple-timescale oscillations have been observed in other systems and predicted theoretically (Laan and Hogeweg, 1995). These oscillations may reflect multi-generational evolutionary processes.

Long-term predator-prey dynamics are difficult to study due to the scarcity of population data on timescales beyond a century. The longest record known to us is the hare-lynx records of the Hudson Bay Company, which reflect a century of fur trade (Elton and Nicholson, 1942). Other records are much shorter, typically covering decades  (Gilg et al., 2009; e.g., Vucetich et al., 2011). We propose that regional sets of radiocarbon-dated animal remains can be used to study predator-prey dynamics in deep time. Because radiocarbon can date materials up to 50,000 years old, it can extend the timescale for studying these important ecological interactions by three orders of magnitude.

Radiocarbon dating is best known for providing absolute dates for archaeological and paleontological organic materials, anchoring stratigraphic sequences and establishing the temporal context of specific findings. Large radiocarbon databases are also used in archaeology to infer changes in human demography (e.g., Stewart et al., 2021) or mammalian community structure (Lazagabaster et al., 2022). These demographic inferences are based on the "dates as data'' paradigm, which assumes that the number of radiocarbon dates in a region reflects the magnitude of occupation or the total number of person-years of human existence (Rick, 1987). This is routinely applied today using summed probability distribution (SPDs), which are applied to calibrated radiocarbon dates (Williams, 2012). In paleontology, the probability of a specimen surviving to be dated is assumed to be proportional to the number of individuals of its taxon that existed in a specific region and time (Lazagabaster et al., 2022; Stuart and Lister, 2014). For example, radiocarbon data have been used to study megafaunal extinctions (Broughton and Weitzel, 2018; e.g., Stewart et al., 2021), using archaeological and paleoenvironmental data to assess the relative importance of anthropogenic and paleoclimatic drivers. Here, we address the more general question of whether the density of radiocarbon dates obtained from a regional set of paleozoological survey data can reveal long-term predator-prey population dynamics. 

Radiocarbon data are inherently sparse, prone to selection and preservation biases, and subject to uncertainties arising from measurement error and calibration procedures used to adjust observed isotopic ratios to ancient background levels (Carleton, 2021; Hajdas et al., 2021; Reimer et al., 2020).  Therefore, any attempt to infer ecological processes from radiocarbon dates should exercise caution, employing minimalist hypotheses, spatially constrained samples, and randomly collected specimens to minimize biases. Radiocarbon datasets spanning a wide time range with continuous deposition and multiple species occurrences are relatively resilient to sample size and effect size issues, and the number of dates in each SPD (sensu Williams, 2012) becomes less critical when identifying strong signals in significant long-term trends (Crema, 2022; Hinz, 2020).  In addition, our method is grounded on comparing the signal of specific taxa in constrained geographical regions through time, and, providing a strong signal, our main concern should be an equivalence of sample sizes  between the compare SPDs. 

We found two datasets that meet the above criteria. The first comprisesis from eastern Beringia, where Fox-Dobbs et al. (2008) published radiocarbon dates of Late Pleistocene mammalian megafauna recovered from gravels near Fairbanks, Alaska  (, where Leonard et. al. 2007, Fox-Dobbs et al. (2008)). The Fairbanks data includes 33 wolves (Canis lupus), 28 horses (Equus sp.), and 3 reindeer (Rangifer tarandus), representing regional mortality between ~40-712 kya. The second dataset is from the Holocene (~10-0.5 kya) southern Judean Desert, Israel, where Lazagabaster et al. (2022) collected radiocarbon dates of leopard (Panthera pardus nimer, N = 12), hyrax (Procavia capensis, N = 27), and Nubian ibex (Capra ibex nubiana, N = 10) from biogenic cave deposits. The Judean Desert data are argued to represent a random sample of the regional fauna (Lazagabaster et al., 2022). 

We hypothesize that the summed probability distribution (SPD) of predator radiocarbon dates, insofar as it tracks changes in population size, will have either greater or lesser divergence than expected from a random sample of SPDs from the same time range. A non-random divergence would suggest that predator and prey populations covaried. This minimalist hypothesis assumes nothing about the wavelength, mechanism, or cause of predator-prey interaction, which we believe cannot be tested with the current data. If supported, this hypothesis would provide preliminary evidence that long-term regional radiocarbon data encode predator-prey interaction signals. This could justify constructing larger datasets to enable in-depth investigation of the structure of these signals.

It is important to emphasize that although we aim to reconstruct long-term ecological interactions between predator and prey taxa, our primary data are the distributions of observations of single taxa over time, aggregated across several find spots in each region. Therefore, biotic and abiotic biases in specimen frequencies should not affect our results unless we have reason to believe that these processes acted differently through time on specific taxa. For example, the hypothetical fact that predator tibiae preserve less well than herbivore tibiae does not matter to the distribution of predator remains over time. Conversely, if we have reason to believe that predator tibiae preserve less well during a particular time interval compared to other periods, this could bias our results. Here, we make the uniformitarian assumption that there are no changes over time in the biotic or abiotic factors affecting the deposition or post-depositional survivability of specific taxa (top predators/larger herbivores) and that the population density of a species in a region is the main factor affecting the probability of finding their remains in the paleontological record and obtaining radiocarbon dates for them. This assumption relies on the comparability of the depositional environments for each dataset throughout time, which consist of dry desert caves or gravel deposits. 

In the same vein, the overrepresentation of carnivores in both datasets in relation to a real ecosystem should not affect our analysis. The estimate of predator and prey frequencies at any point in time is not obtained from their numerical ratio, which would then indeed have to reflect a reasonable predator/prey balance. Rather, it is derived from the independent calculation of the probability densities of the radiocarbon dates of each group. In this case, the frequencies are irrelevant unless they are too few to represent the distribution of the species through time, a subject to which we referred above (Crema, 2022; Hinz, 2020). 
Methods
The radiocarbon datasets, as detailed in Supplementary tables 1 and 2, were categorized into two groups for each region: predators (Canis / Panthera) and prey (Equus, Rangifer / Procavia, Capra). These groups exclude taxa that are not likely to be in trophic interaction in the Judean Desert, for example the carrion-eating striped hyena (Hyaena hyaena) or the plateau-dwelling Dorcas gazelle (Gazella dorcas). Specimens without both minimum and maximum age estimates were also excluded. The original publications by Leonard et al. (2007), Fox-Dobbs et al. (2008) and Lazagabaster et al. (2022) provide comprehensive information on the context and laboratory procedures, which are not reiterated here. 

Note, however, that the leopard specimens from the Judean Desert represent bones recovered from three caves, and their estimated minimum number of individuals is six (Lazagabaster et al., 2022). Unfortunately, we cannot distinguish individuals within each cave by removing from our analysis specimens that have similar radiocarbon dates, based, e.g., on the overlap of their 95% highest posterior density. This type of ‘chronological minimum number of individuals’ calculation is conceptually equivalent to flattening the summed probability density curves we are comparing, and making them ipso facto similar to random noise. In this analysis, therefore, we assume that the specimens are independent from each other. This is partially supported by the fact that three leopard specimens that were recovered from the same cave and that yielded aDNA actually belonged to three different individuals, although their minimum number of individuals would be calculated as one (Davidovich et al. under revision). Regardless, we acknowledge that some degree of interdependence is expected under these conditions and cannot be controlled.

[bookmark: _1fob9te]The grouped radiocarbon ages underwent calibration (using the `rcarbon::calibrate` function) and were subsequently converted to sSummed pProbability dDistributions (SPDs) using the `rcarbon::spd` function. These operations were performed in R 4.3.0 (R Core Team, 2021), utilizing the 'rcarbon' library developed by Crema and Bevan (2021).

Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951), a widely used measure in information theory and data science, quantifies the distancedifference  between two probability distributions by calculating the difference between the Shannon entropy of the first distribution and the cross-entropy of the first and second distributions. The resulting  over a shared variable. Unlike symmetric measures, KL divergence value is not a distance metric as it does not satisfy the triangle inequality and is asymmetric, meaning the divergence of p(x) from q(x) differs from the divergence of q(x) from p(x). The KL divergence is one of the most popular ways to compare probability distributions in information theory and data science, and has mathematical properties that make it uniquely suitable for measuring relative information (reviewed in Deng et al. 2019).   We chose KL divergence to compare SPDs due to its independence from arbitrary or predefined values and its reduced sensitivity to sample size, a common drawback of significance tests based on p-values (Crema, 2022). 

KL divergence from the prey to the predator SPD was computed in each case using the `philentropy::KL` function from the 'philentropy' library (Drost, 2018). Following this, a random set of integers, equivalent to the sample size of the predator, was drawn from the range of the radiocarbon years of the prey. Each integer in the random set was assigned a radiocarbon measurement error that closely matched the real radiocarbon error in the actual dataset. These integers were then calibrated, converted to an SPD, and the Kullback-Leibler divergence from the actual prey SPD was calculated.

This random sampling procedure was repeated 100 times with replacement. The percentage of random samples was then used to estimate the likelihood of the divergence of the predator from the prey SPDs being derived from a random dataset, giving the probability of KL(Predator||Prey) ∉ KL(Random||Prey). Note that bootstrap support is a conservative estimate of accuracy in most cases, and should not be understood as a statistical p-value without additional, case-specific research, which is beyond the scope of this study (Hilis & Bull, 1993). The smoothed SPDs (calculated using 'modelbased::smoothing') are presented in the figures below. The smoothing procedure was applied subsequent to the KL divergence calculations.
Results and concluding remarks
The Fairbanks dataset shows fluctuating and alternating values of predator and prey densities over the interval between ~45 and 7 kya (Figure 1). The Kullback-Leibler (KL) divergence between the predator and prey distributions is 1.7174, which is smaller than 98% of the divergences measured for (random) predator-(real) prey distributions. This supports our hypothesis that the Fairbanks predator and prey distributions are not random, and that the low divergence between them is therefore unlikely to be due to chance.

Similarly, the Judean Desert dataset shows fluctuating and alternating values of predator and prey densities over the interval between 10,000 and <500 years (Figure 2). The Kullback-Leibler (KL) divergence between the predator and prey distributions is 5.0741, which is greater than 94% of the divergences measured for (random) predator-(real) prey distributions. This supports our hypothesis that the Judean Desert predator and prey distributions are not random, and that the low divergence between them is therefore unlikely to be due to chance.

	Statistic
	Fairbanks
	Judean Desert

	KL(Predator||Prey)
	1.7174
	5.0741

	KL(Random||Prey)
Min.
	1.559
	3.065

	1st quartile
	2.148
	4.001

	Median
	2.315
	4.523

	Mean
	2.294
	4.417

	3rd quartile
	2.473
	4.858

	Max.
	3.072
	5.242 

	Bootstrap support for KL(Predator||Prey) ∉ KL(Random||Prey)
	98% 
	94%



Table 1. Summary statistics of the original KL divergence of predator from prey SPD in the Fairbanks and the Judean Desert datasets. 


As a specific case of population dynamics, predator-prey systems  are typically studied over short time periods, limiting our understanding of long-term fluctuations driven by factors such as climate change and evolution. Radiocarbon records may capture signals of these dynamics under rare sampling conditions. Here, we tested the hypothesis that the divergence between predator and prey probability density curves is not random (KL(Predator||Prey) ∉ KL(Random||Prey)) using two coupled datasets from Fairbanks, Alaska, and the southern Judean Desert, Israel. Our results suggest that in these cases the divergence is unlikely to be random. This is informative of the idea that radiocarbon data may sequester long-term predator-prey interactions that are over and beyond the timescale observed until now. Additional high-resolution datasets are required to validate these results and further investigate the observed patterns. 

[image: ]
Figure 1. The prey (redgreen) and predator (bluered) SPD for the Fairbanks data, against the background of 100 random SPD replicates (top). The distribution of the Kullback-Leibler divergences from the prey to the predator KL(Predator||Prey)  SPDs is marked by the vertical red line on the histogram below, which shows the distribution of the KL divergences between the prey SPD and the random replicates KL(Random||Prey) (bottom).[footnoteRef:0] [0:  The function was run with the following parameters: kld_dates(fairbanks_prey$RC_date, fairbanks_prey$RC_error, fairbanks_predator$RC_date, fairbanks_predator$RC_error, sample = 100, dataset_name = "Fairbanks", y_scaling_parameter = 4, smoothing = 0.4)] 

[image: ]

Figure 2. The prey (redcyan) and predator (bluetan) SPD for the Judean Desert data, against the background of 100 random SPD replicates (top).[footnoteRef:1] The distribution of the Kullback-Leibler divergences from the prey to the predator KL(Predator||Prey)  SPDs is marked by the vertical red line on the histogram below, which shows the distribution of the KL divergences between the prey SPD and the random replicates KL(Random||Prey) (bottom). [1:  The function was called with the following parameters: kld_dates(desco_prey$RC_date, desco_prey$RC_error, desco_predator$RC_date, desco_predator$RC_error, sample = 100, dataset_name = "Judean Desert", y_scaling_parameter = 4, smoothing = 0.4).
] 



[bookmark: _3znysh7]Appendices
[bookmark: _2et92p0]Supplementary table 1. The Beringia dataset, from Fox-Dobbs et al. (2008, tables 2-3)

	Genus
	Specimen_ID
	RC_date
	RC_error
	Lab_ID

	Canis
	AMNH F:AM 30450
	7751
	64
	AA48695

	Canis
	AMNH F:AM 67165
	12600
	150
	AA42317

	Canis
	AMNH F:AM 67157
	14690
	190
	AA42315

	Canis
	AMNH F:AM 70944
	15268
	169
	AA38449

	Canis
	AMNH F:AM 30447
	15580
	190
	AA35223

	Canis
	AMNH F:AM 30451
	15800
	90
	UCR3761

	Canis
	AMNH F:AM 67227
	15870
	190
	AA35231

	Canis
	AMNH F:AM 68009-A
	16800
	210
	AA35227

	Canis
	AMNH F:AM 67224
	17640
	240
	AA35226

	Canis
	AMNH F:AM 30432
	17670
	230
	AA48704

	Canis
	AMNH F:AM 30453
	19210
	260
	AA48702

	Canis
	AMNH F:AM 70942
	20150
	110
	CAMS115775

	Canis
	AMNH F:AM 67169
	20305
	385
	AA35216A

	Canis
	AMNH F:AM 30452
	20550
	120
	CAMS115769

	Canis
	CMN 9929
	20910
	70
	UCR3764

	Canis
	AMNH F:AM 67231
	21900
	140
	CAMS115774

	Canis
	AMNH F:AM 68008-G
	23380
	470
	AA35222

	Canis
	AMNH F:AM 67170
	27620
	580
	AA48694

	Canis
	AMNH F:AM 30431
	28500
	300
	CAMS115776

	Canis
	AMNH F:AM 67248
	29800
	400
	CAMS115773

	Canis
	AMNH F:AM 67168
	31200
	450
	CAMS115767

	Canis
	CMN 42388
	33900
	1700
	CAMS115763

	Canis
	AMNH F:A 67184
	34600
	700
	CAMS115763

	Canis
	AMNH F:AM 67159
	35200
	2300
	AA48703

	Canis
	AMNH F:AM 70958
	37700
	2600
	AA37615

	Canis
	AMNH F:AM 70945
	37733
	2633
	AA38448

	Canis
	AMNH F:AM 67202
	38000
	2700
	AA35224

	Canis
	AMNH F:AM 67243
	38500
	1100
	CAMS115772

	Canis
	CMN 17311
	38790
	540
	UCR3762

	Canis
	AMNH F:AM 67197
	39300
	1230
	CAMS115760

	Canis
	AMNH F:AM 67208
	41040
	1530
	CAMS115759

	Canis
	AMNH F:AM 30438
	45500
	2700
	CAMS115778

	Canis
	AMNH F:AM 67167
	45800
	2800
	CAMS115768

	Equus
	AMNH F:AM 142429
	12310
	45
	CAMS119982

	Equus
	AMNH F:AM 142423
	12560
	50
	CAMS119976

	Equus
	AMNH F:AM 60025
	13710
	60
	CAMS120061

	Equus
	AMNH F:AM 60005
	14630
	60
	CAMS119969

	Equus
	AMNH F:AM 142421
	14860
	60
	CAMS119974

	Equus
	AMNH F:AM 142424
	15460
	70
	CAMS119977

	Equus
	AMNH F:AM 60032
	15850
	70
	CAMS120068

	Equus
	AMNH F:AM 60004
	16370
	80
	CAMS119968

	Equus
	AMNH F:AM 60044
	18630
	100
	CAMS119970

	Equus
	AMNH F:AM 60023
	19000
	100
	CAMS120058

	Equus
	AMNH F:AM 60027
	19590
	110
	CAMS120059

	Equus
	AMNH F:AM 142420
	19870
	110
	CAMS119973

	Equus
	AMNH F:AM 142430
	19950
	110
	CAMS119983

	Equus
	AMNH F:AM 60020
	19950
	120
	CAMS120062

	Equus
	AMNH F:AM 142427
	19960
	110
	CAMS119980

	Equus
	AMNH F:AM 142426
	20300
	120
	CAMS119979

	Equus
	AMNH F:AM 142425
	20440
	120
	CAMS119978

	Equus
	AMNH F:AM 142419
	20520
	120
	CAMS119971

	Equus
	AMNH F:AM 142428
	21280
	130
	CAMS119981

	Equus
	AMNH F:AM 60026
	21310
	140
	CAMS120060

	Equus
	AMNH F:AM 142435
	21840
	140
	CAMS119989

	Equus
	AMNH F:AM 142434
	22610
	150
	CAMS119988

	Equus
	AMNH F:AM 60003
	24260
	200
	CAMS120077

	Equus
	AMNH F:AM 142431
	25710
	230
	CAMS119985

	Equus
	AMNH F:AM 142433
	25960
	240
	CAMS119987

	Equus
	AMNH F:AM 60033
	39910
	1330
	CAMS120069

	Equus
	AMNH F:AM 60017
	41000
	1500
	CAMS119972

	Equus
	AMNH F:AM 60221
	43700
	200
	CAMS120067

	Rangifer
	AMNH F:AM 142443
	16000
	190
	AA48686

	Rangifer
	AMNH F:AM 142444
	16400
	202
	AA48687

	Rangifer 
	AMNH F:AM 142440
	16700
	207
	AA48682

	Rangifer
	AMNH F:AM 142441
	17300
	222
	AA48683

	Rangifer
	AMNH F:AM 142438
	21000
	361
	AA48680

	Rangifer
	AMNH F:AM 142446
	29640
	370
	CAMS120070






Supplementary table 2. The Judean Desert Holocene dataset, modified from Lazagabaster et al. (2022).

	Genus
	Specimen_ID
	Material
	RCdate
	RCerror
	Laboratory
	Lab_ID

	Panthera
	HE-004
	collagen
	5317
	25
	OxA
	39091

	Panthera
	HE-008
	collagen
	5301
	25
	OxA
	39214

	Panthera
	HE-010
	collagen
	4477
	26
	OxA
	38732

	Panthera
	HE-053
	collagen
	4508
	30
	OxA
	38788

	Panthera
	HE-054
	collagen
	6239
	26
	OxA
	39216

	Panthera
	HE-124
	collagen
	5375
	28
	OxA
	47465

	Panthera
	HE-195
	collagen
	4945
	25
	OxA
	39107

	Panthera
	HE-230
	collagen
	4935
	26
	OxA
	39109

	Panthera
	HE-231
	collagen
	5312
	25
	OxA
	39110

	Panthera
	HE-232
	collagen
	5366
	30
	OxA
	47473

	Panthera
	SK-703
	bioapatite
	3200
	30
	UGAMS
	44190

	Panthera
	UR-035
	bioapatite
	8960
	30
	UGAMS
	48266

	Capra
	EG-002
	bioapatite
	7850
	30
	UGAMS
	46061

	Capra
	HE-021
	collagen
	3141
	22
	OxA
	39215

	Capra
	HE-024
	collagen
	1860
	20
	UGAMS
	46066

	Capra
	QN-028
	collagen
	1870
	20
	OxA
	39255

	Capra
	QN-083
	collagen
	4550
	24
	OxA
	39175

	Capra
	SK-014
	collagen
	350
	20
	UGAMS
	46081

	Capra
	TS-022
	collagen
	1338
	20
	OxA
	39227

	Capra
	QN-084
	collagen
	4520
	20
	UGAMS
	46078

	Capra
	TZB-004
	collagen
	870
	20
	UGAMS
	48253

	Capra
	TS-032
	collagen
	1060
	20
	UGAMS
	46116

	Procavia
	ARN-001
	collagen
	180
	20
	UGAMS
	48283

	Procavia
	ARN-002
	bioapatite
	9600
	110
	UGAMS
	48284

	Procavia
	C513-003
	collagen
	430
	20
	UGAMS
	48261

	Procavia
	C513-004
	collagen
	1490
	20
	UGAMS
	48260

	Procavia
	EG-009
	collagen
	7141
	28
	OxA
	-88

	Procavia
	HE-005
	collagen
	2948
	22
	OxA
	39213

	Procavia
	HE-100
	collagen
	2920
	20
	UGAMS
	46068

	Procavia
	HE-153
	collagen
	6476
	26
	OxA
	39218

	Procavia
	HE-177
	bioapatite
	4350
	20
	UGAMS
	46069

	Procavia
	HE-184
	collagen
	2920
	22
	OxA
	39106

	Procavia
	HYS-002
	collagen
	1130
	20
	UGAMS
	49003

	Procavia
	HYS-003
	collagen
	1280
	20
	UGAMS
	49004

	Procavia
	QN-026
	collagen
	924
	19
	OxA
	39255

	Procavia
	QN-038
	collagen
	2520
	30
	UGAMS
	46077

	Procavia
	QN-056
	collagen
	1144
	20
	OxA
	39260

	Procavia
	QN-087
	collagen
	335
	20
	OxA
	39176

	Procavia
	SK-001
	collagen
	363
	22
	OxA
	39607

	Procavia
	SK-002
	collagen
	376
	19
	OxA
	39608

	Procavia
	SK-046
	collagen
	1590
	20
	OxA
	39609

	Procavia
	SK-152
	bioapatite
	6490
	30
	UGAMS
	46134

	Procavia
	SK-189
	collagen
	1140
	20
	UGAMS
	46085

	Procavia
	SK-211
	collagen
	4228
	24
	OxA
	39930

	Procavia
	SK-241
	collagen
	620
	18
	OxA
	39615

	Procavia
	SK-493
	collagen
	646
	18
	OxA
	39849

	Procavia
	TS-065
	collagen
	1160
	19
	OxA
	47371

	Procavia
	TZB-009
	collagen
	2010
	20
	UGAMS
	48251

	Procavia
	YO-013
	collagen
	721
	18
	OxA
	39851
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