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Abstract 20 

Activities attested since at least 2.6 Myr, such as stone knapping, marrow extraction, and 21 

woodworking may have allowed early hominins to recognize the technological potential of 22 

discarded skeletal remains and equipped them with a transferable skillset fit for the marginal 23 

modification and utilization of bone flakes. Identifying precisely when and where expedient 24 

bone tools were used in prehistory nonetheless remains a challenging task owing to the 25 

multiple natural and anthropogenic processes that can mimic deliberately knapped bones. 26 

Here, we compare a large sample of the faunal remains from Lingjing, a 115 ka-old site from 27 

China which has yielded important hominin remains and rich faunal and lithic assemblages, 28 

with bone fragments produced by experimentally fracturing Equus caballus long bones. Our 29 

results provide a set of qualitative and quantitative criteria that can help zooarchaeologists 30 

and bone technologists distinguish faunal remains with intentional flake removal scars from 31 

those resulting from carcass processing activities. Experimental data shows marrow 32 

extraction seldom generates diaphyseal fragments bearing more than six flake scars arranged 33 

contiguously or in interspersed series. Long bone fragments presenting such characteristics 34 

can, therefore, be interpreted as being purposefully knapped to be used as expediency tools. 35 

The identification, based on the above experimental criteria, of 56 bone tools in the Lingjing 36 

faunal assemblage is consistent with the smaller size of the lithics found in the same layer. 37 

The continuity gradient observed in the size of lithics and knapped bones suggests the latter 38 

were used for tasks in which the former were less or not effective. 39 
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1. Introduction 42 

Owing to their ubiquity in the archaeological record since 3.3 Myr (million years ago) 43 

(Harmand et al., 2015; Lewis and Harmand, 2016), stone tools have attracted much attention 44 

in studies of the technological changes associated with the evolution of members of our 45 

lineage. Despite use wear evidence for woodworking (Lemorini et al., 2014, 2019) and bone 46 

cutting (Domínguez-Rodrigo et al., 2005), the latter likely resulting from butchery and 47 

carcass processing activities, it remains unclear how and when lithic and organic technologies 48 

integrated the technical system of our ancestors and how they co-evolved. The origin and 49 

early developments of organic technologies remain difficult to apprehend because of their 50 

perishable nature. Pinpointing when osseous artefacts were incorporated in past technological 51 

system is nonetheless decisive in palaeoanthropological research because it identifies a 52 

significant shift in the way prehistoric human groups conceived faunal resources at their 53 

disposal. Specifically, it signals when animal skeletal element utility expanded to include the 54 

manufacture of implements in addition to their primary role for consumption, fat use or fuel. 55 

Earliest examples of osseous tools include bone digging implements from Southern Africa, 56 

an innovation attributed to Australopithecus robustus living in this region some 2.0–1.5 Myr 57 

ago as well as bone fragments bearing evidence of intentional flaking, battering and abrasion 58 

from Olduvai Beds I and II, East Africa, likely used by early members of our genus, Homo, 59 

in hide-working, butchery, digging, knapping, and hunting activities between ~1.8–1.0 Myr 60 

(Backwell and d’Errico, 2001, 2004; d’Errico and Backwell, 2009; Stammers et al., 2018; 61 

Pante et al., 2020). In the Southeast Asian Pacific Islands, shell scrapers were found at Trinil, 62 

Java (Joordens et al., 2015), in a formation linked to Homo erectus occupation some 450 kyr 63 

(thousand years ago). In Europe and the Levant, many Lower Palaeolithic antler, bone, and 64 

ivory tools were reported, yet most of them have been repeatedly called into questions (for a 65 

review see Villa and Bartram, 1996; Villa and d’Errico, 2001, and references therein). An 66 

indubitable tool type, however, consists of Acheulean bone handaxes. These tools are 67 

documented in Africa, at Olduvai Bed II, 1.7-1.15 Myr (Backwell and d’Errico, 2004), and at 68 

Konso, Ethiopia, in a context dated to ~1.4 Myr (Sano et al., 2020), in numerous sites dated 69 

between ~500–250 kyr from the Levant (Revadim Quarry: Rabinovich et al., 2012), Central 70 

Europe (Vértesszőlős: Kretzoi and Dobosi, 1990; Bilzingsleben: Mania and Mania, 2003), 71 

and Southern Europe (Torre in Pietra: Anzidei et al., 2001; La Polledrara: Anzidei, 2001; 72 

Santucci et al., 2016; Fontana Ranuccio: Naldini et al., 2009; Castel di Guido: Boschian and 73 

Saccà, 2015), as well as at the Bashiyi Quarry, Chongqing, China, in a context dated to ~170 74 

kyr (G. Wei et al., 2017). 75 
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 87 

Archaeologists usually make a distinction between two main bone tool categories: formal 88 

tools, i.e., faunal remains formally shaped into specific tool type with manufacturing 89 

techniques specific to osseous materials, such as grinding, gouging, scraping, notching, 90 

incising, etc., and expedient tools, i.e., bone fragments bearing little or no modifications and 91 

that were used as such (Klein, 2009; Kuhn, 2020). It is probable that activities attested since 92 

at least 2.6 Myr such as stone knapping, bone fracturing for marrow extraction (Madrigal and 93 

Blumenschine, 2000; Blumenschine and Pobiner, 2007), and woodworking (Lemorini et al., 94 

2014, 2019) have allowed early hominins to recognize the technological potential of 95 

discarded carcass processing remains and equipped them with a transferable skillset fit for the 96 

manufacture and utilization of osseous material. Through trials and errors, Palaeolithic 97 

hominins would have been able to observe how bone responded to static and dynamic 98 

loadings, and embody this knowledge for immediate or future or use (sensu Ingold, 2002). 99 

 100 

Identifying precisely when expedient tool use became commonplace in our evolutionary 101 

history remains a challenging task. Perhaps the most documented amongst this tool category 102 

are bone hammers and retouchers, i.e., knapping implements respectively used to remove 103 

flakes from lithic cores and to retouch the edges of stone tools. The earliest known instances 104 

of these tool types date back to 2.1-1.5 Myr at Olduvai Gorge, Africa (Backwell and d’Errico, 105 

2004), to MIS18 (Marine Isotopic Stage) at Gesher Benot Ya’aqov in the Levant (Goren-106 

Inbar, 2011), MIS13 at Boxgrove in Europe (Smith, 2013) and MIS5 at Lingjing in East Asia 107 

(Doyon et al., 2018, 2019). From MIS9, bone retouchers become an integral part of the 108 

cultural repertoire of Neanderthals (Moncel et al., 2012; Blasco et al., 2013; Daujeard et al., 109 

2014, 2018; Moigne et al., 2016) and reach during MIS5 a high degree of standardization 110 

(Daujeard, 2007; Verna and d’Errico, 2011; Costamagno et al., 2018; Daujeard et al., 2018). 111 

Possible expedient tool types also include long bone shaft fragments with one or more edges 112 

modified by blows that generated flake scars present on the cortical and/or the medullar 113 

surface of the bone. In Europe, growing evidence for this technology appears during MIS9 at 114 

Gran Dolina, Spain (Rosell et al., 2011), Schöningen, Germany (Julien et al., 2015), and in 115 

Italy at Castel di Guido (Boschian and Saccà, 2015), Bucobello (Di Buduo et al., 2020), La 116 

Polledera di Cecanibbio and Rebibbia-Casal de’ Pazzi (Anzidei, 2001). In East Asia, similar 117 

tools were reported at Donggutuo, from a formation dated to 1.2-1.0 Myr (Wei, 1985) as well 118 

as at Panxia Dadong in a context dated between 250-130 ka, although the latter were 119 

produced on rhinoceros’ teeth (Miller-Antonio et al., 2000). Other instances of expedient 120 

Formatted: Font: Italic

Deleted: Castel di Guido, Italy (Boschian and Saccà, 2015).121 



 

 4 

bone tools from this region are reported in the literature but would require further assessment 122 

with modern methods to verify their chronology and the anthropogenic nature of the 123 

modifications (Xujiayao: Chia et al., 1979; Zhoukoudian Upper Cave: Pei, 1939; Yonggul 124 

cave: Sohn et al., 1991). It has been proposed that these tools were used for cutting soft 125 

animal tissues, vegetal fibers, or as wedges for splitting wood, antler and bone (Burke and 126 

d’Errico, 2008; Tartar, 2012; Hardy et al., 2014; Julien et al., 2015; Baumann et al., 2020; 127 

Kozlikin et al., 2020; Mateo-Lomba et al., 2020). 128 

 129 

Despite this expanding data set, we are still lacking diagnostic criteria to distinguish faunal 130 

remains with flake scars that were intentionally modified for technological purposes from 131 

those resulting from carcass processing activities (see Research background). Our aim here is 132 

to contribute to the establishment of such criteria. The need for this study arose when 133 

analyzing the faunal assemblage excavated at Lingjing, layer 11, an archaeological context 134 

dated to 125-105 kyr (Nian et al., 2009) that has also yielded important archaic human 135 

remains (Li et al., 2017b). During the 2005-2015 excavation campaigns, one of us (LZ) 136 

isolated a number of faunal fragments bearing flake removal scars on both their cortical and 137 

medullar surfaces, and interpreted some of them as probable bone tools based on putative use 138 

wear recorded on some edges (Li and Shen, 2010). In 2016 two of us (LD, FD) were invited 139 

to re-examine these objects and reappraise a larger sample of faunal remains from the same 140 

context bearing flake scars and other modifications to test the hypothesis that they were used 141 

as tools. This led to the identification of the earliest known bone and antlers fragments used 142 

as retouchers and soft hammer from China (Doyon et al., 2018). Our research on the flaked 143 

specimens takes into account several lines of evidence: 1) a critical review of the site 144 

formation process; 2) a thorough quantification of the size and location of the flake removal 145 

scars on the putative bone tools; 3) a comparison with a selection of bone fragments isolated 146 

during the 2005-2015 excavations (n = 127), 4) a randomly selected sample of diaphyseal 147 

fragments (n = 100) coming from the same layer and recovered during the same excavation 148 

seasons (2005-2015), 5) an analysis of the entire faunal assemblage recovered from layer 11 149 

during the 2017 campaign (n = 1260); 6) an experimental breakage of large mammals long 150 

bones aimed to quantify flake scars resulting from this activity. Our results suggest at least 56 151 

faunal fragments can be interpreted as expedient bone tools, which expands the behavioural 152 

realm of the hominins who visited the Lingjing site during the Middle to Late Pleistocene 153 

transition. 154 

 155 

Deleted: -125156 

Deleted: removal157 



 

 5 

2. Research background 158 

The technological use of carcass processing by-products by prehistoric hominins has been 159 

suggested and documented for more than a century. In the early 1900s, Dr. Henri-Martin 160 

experimented with the fracturing of horse long bones for marrow extraction and highlighted 161 

that some of the resulting bone fragments would have been fit for hide working or for 162 

transforming other kinds of material. Comparisons between his experimental results and the 163 

faunal remains from the Mousterian layers at La Quina, France, allowed him to suggest 164 

criteria to identify expedient osseous tools, such as the presence of use wear in the form of an 165 

unevenly distributed polish and worn edges smoothed by friction (Henri-Martin, 1910). 166 

Likewise, Raymond Dart (1957) hypothesized that instead of knapped lithics, Makapansgat 167 

Australopithecus prometheus used bone, tooth, and horn as hunting weapons. Despite his 168 

interpretation being later attributed to non-anthropogenic, taphonomic processes (Brain, 169 

1981), Dart’s work sparked an interest for studies aimed to document the natural and 170 

anthropogenic processes responsible for the modification of faunal remains. We have since 171 

gained a clearer understanding of the multiple agents that can cause the post-mortem flaking, 172 

cracking, and fragmentation of osseous remains, including gnawing, chewing, fracturing, and 173 

digestion by mammal and reptile predators, carnivores, rodents, herbivores, or birds (Binford, 174 

1981; Haynes, 1983; Villa and Mahieu, 1991; Pérez Ripoll, 1992; Hockett, 1996; Villa and 175 

Bartram, 1996; Capaldo, 1998; Benson et al., 2004; Villa et al., 2004; Njau and 176 

Blumenschine, 2006, 2012; Margalida, 2008; Ardèvol and López, 2009; Marín Arroyo et al., 177 

2009; Cáceres et al., 2011; Hutson et al., 2013; Bourdillat, 2014; Lloveras et al., 2014; 178 

Sanchis Serra et al., 2014; Armstrong, 2016), fracturing by hominins for marrow and bone 179 

grease exploitation (Bunn, 1981; Gifford-Gonzalez, 1991; Outram, 2001; Pickering and 180 

Egeland, 2006; Blasco et al., 2014; Grunwald, 2016; Marom, 2016; Morin and Soulier, 2017; 181 

Stavrova et al., 2019; Morin, 2020; Vettese et al., 2020a, 2020b), trampling, root etching, 182 

weathering, exposure to heat and cold, sediment pressure, deposition in alkaline environment 183 

(Brain, 1967, 1981; Behrensmeyer, 1978; Binford, 1981; Lyman, 1984, 1994; Behrensmeyer 184 

et al., 1986; Haynes, 1991; Blasco et al., 2008; Costamagno et al., 2010; Morin, 2010; 185 

Madgwick, 2014; Reynard, 2014; Fernández-Jalvo and Andrews, 2016), etc.  186 

 187 

When osseous technology is concerned, and leaving aside bone retouchers, which have 188 

received much attention (e.g., Verna and d’Errico, 2011; Mallye et al., 2012; Moncel et al., 189 

2012; Mozota Holgueras, 2012; Blasco et al., 2013; Moigne et al., 2016; Costamagno et al., 190 

2018; Daujeard et al., 2018; Doyon et al., 2018; Hutson et al., 2018a; Doyon et al., 2019; 191 
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Pérez et al., 2019 and references therein), the identification of expedient bone tools still 194 

heavily relies on the presence of use wear associated with flaking scars (Hardy et al., 2014; 195 

Julien et al., 2015; Baumann et al., 2020; Kozlikin et al., 2020; Mateo-Lomba et al., 2020), 196 

accidental fracture and crushing of the working edges and surfaces (Burke and d’Errico, 197 

2008; Tartar, 2012; van Kolfschoten et al., 2015; Hutson et al., 2018b), or a combination of 198 

these factors (Backwell and d’Errico, 2001, 2004, 2008; Stammers et al., 2018). Faunal 199 

remains bearing only flake scars, however, have been somewhat overlooked. In recent years, 200 

their description was mainly concerned with flakes produced in the context of osseous tool 201 

blank extraction (see Christensen and Goutas, 2018; and particularly Goutas and Christensen, 202 

2018). One noticeable exception remains the experimental work on elephant bones and the 203 

archaeological comparison with the assemblage from Olduvai Gorge, Tanzania, where the 204 

number of flake removals, their location and dimensions were systematically recorded 205 

(Backwell and d’Errico, 2004). In the present paper, we extend the approach proposed by 206 

these authors with the aim to distinguish between intentionally modified expedient osseous 207 

tools and marrow exploitation by-products from the Lingjing site, Henan, China. 208 

 209 

3. Archaeological context 210 

The Lingjing site was identified in 1965 when microcores and microblades lithic 211 

technologies as well as mammalian fossils were collected on the surface of a field (Zhou, 212 

1974; Chen, 1983) in the northeast Xuchang County, Henan Province (34˚ 04’ 08.6” N, 113˚ 213 

40’ 47.5” E, 117masl). The site is located in a transitional area between the eastern foothills 214 

of Songshan Mountains and the Huang-Huai Plain, on the southern fringes of the North 215 

China Plain, some 120km south of the Yellow River (Fig. 1). An active water spring is 216 

present in the southern portion of the site and a water cistern was built over its opening in 217 

1958 (Li et al., 2020). 218 

 219 

From 2005 to 2017, a c. 550m2 area was excavated by one of us (LZ, in collaboration with 220 

Dr. Li Hao, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, in 2017) at 221 

a depth averaging c. 9m. Excavations have been halted since 2018 owing to the construction 222 

of an Archaeological Site Museum above the deposit, an infrastructure project which aims to 223 

put on display the human fossils and archaeological remains recovered at this locality (see 224 

Zhao and Doyon, 2020 for a definition of this type of Museum). During the excavations, 225 

eleven geological layers were identified and three archaeological horizons yielded cultural 226 

remains. The uppermost layers 1-4 are Holocene in age and were identified over the entire 227 
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excavated surface. The archaeological remains recovered from these layers were exclusively 229 

found along the norther limit of the investigated area, and only consist of a few isolated, fine 230 

pottery sherds, none of which could be refitted to one another. Decors on their outer surface 231 

suggest a cultural attribution to a period spanning from the Yangshao Neolithic to the Shang-232 

Zhou Bronze Age (~6.5 – 2.5 kyr). Layer 5 and the spoil heap left by well diggers in 1958 233 

were identified solely in the southern portion of the site. This layer and the sediments 234 

originating from it yielded a rich microcore and microblade industry made of high-quality 235 

black chert (Li et al., 2014; Li and Ma, 2016; Z. Li et al., 2018), a small amount of quartz 236 

tools, some very fragile, thick, crude, simple-shaped pottery sherds with plain surfaces (Li et 237 

al., 2017a), burnt and unburnt faunal remains, charcoals, ostrich egg shell fragments, 238 

including one transformed into a perforated pendant, and the oldest sculpture discovered in 239 

China, a bird figurine carved from a mammalian long bone fragment that had likely been 240 

heated in an anaerobic environment prior to shaping the artwork (Li et al., 2020). The 14C 241 

dating of burnt bones, charcoals and charred residues recovered on the pottery sherds 242 

suggests three human occupations spanning from the LGM to the Pleistocene-Holocene 243 

transition, i.e., a first occupation between ~13.8 – 13.0 kyr by Late Glacial hunter-gatherers 244 

bearing microlithic technologies who made the bird figurine, and two human occupations by 245 

ceramics users between ~11 – 10 kyr and ~9.6 – 8.7 kyr respectively. Layers 6 to 9 were 246 

identified over the whole excavated area. They were entirely sterile and represent a c. 4.5m 247 

hiatus between the LGM human occupations from layer 5 above and the early Late 248 

Pleistocene archaeological horizon below. 249 

 250 

Layers 10 and 11 were deposited during the early Late Pleistocene. Two OSL samples 251 

collected at the base and in the upper half of layer 10 were dated to ~102 ± 2 and ~96 ± 6 kyr 252 

respectively. The five OSL samples from layer 11 yielded ages spanning from ~105 kyr at 253 

the top to ~125 kyr at the bottom of the layer (Nian et al., 2009). These ages correspond to 254 

the early MIS5, i.e., MIS5e to MIS5d, and to the last interglacial paleosol S1 in the Chinese 255 

Loess Plateau sequence. In 2007 and 2014, 45 fragments of archaic human crania were 256 

recovered in situ in layer 11. Aside from three isolated pieces, all fragments were refitted into 257 

two individual crania (Li et al., 2017b), named Xuchang (XUC) 1 and 2 after the County in 258 

which the site is located. Morphological analysis of the crania identifies a mosaic of 259 

anatomical traits that remains undocumented to this day in the Old World. They exhibit 260 

ancestral features reminiscent of early Middle Pleistocene eastern Eurasians, others derived 261 



 

 8 

and shared by archaic and modern Late Pleistocene individuals as well as a combination of 262 

traits at the midoccipital area and the temporal labyrinths usually observed only in 263 

Neanderthal populations. This peculiar mix suggests complex intra- and interregional 264 

population dynamics between western and eastern Eurasian hominins prior and during the 265 

Middle to Late Pleistocene transition. It has been suggested these two individuals could be 266 

Denisovans (Martinón-Torres et al., 2017) although DNA and proteomic analyses are still 267 

missing to test this hypothesis. From a palaeopathological perspective, both XUC1 and 268 

XUC2 present external auditory exostoses, i.e., a dense bony growth protruding in the 269 

external auditory canal that implies conductive hearing loss (Trinkaus and Wu, 2017). 270 

 271 

The rich lithic assemblage from Lingjing, layers 10 and 11, amounts to more than 15,400 272 

remains. Quartz and quartzite are the two predominant raw materials used for the 273 

manufacture of tools. Alterations of the cortex still present on lithic artefacts, estimation of 274 

the original size of the river pebbles selected for knapping, and outcrops survey of the Ying 275 

River suggest the prehistoric occupants at Lingjing exploited raw material found within 10km 276 

from the site (H. Li et al., 2019). Differences in selected raw material are documented 277 

between layer 10 and 11. While the percentage of quartz artefacts declines from layer 11 to 278 

10, this latter layer attests for a diversification of raw material, with a notable increase of 279 

quartzite, sandstone and basalt (Zhao et al., 2019). All products and by-products of the 280 

operational sequence are represented in the lithic assemblage. The reduction sequence is 281 

mainly oriented towards the detachment of flakes and production of chunks that are later 282 

retouched and shaped into tools. A fifth of the cores are of discoidal type, the remaining cores 283 

correspond to expedient debitage following a number of knapping strategies (for a distinction 284 

between formal and expedient cores, see Wallace and Shea, 2006). This pattern indicates 285 

some degree of behavioural flexibility and a proximal, problem-oriented response to satisfy 286 

needs requiring the use of lacerating edges (H. Li et al., 2019). The shaping of blanks into 287 

tools is predominantly performed by free-hand hard hammer percussion (≈75%), although 288 

organic soft hammer percussion and pressure retouch were also documented on >20% of the 289 

implements (H. Li et al., 2019). The lithic toolkit primarily includes scrapers, notches, 290 

denticulates, borers, and points. A few burins and backed pieces were also identified. Rare 291 

instances of heavy-duty tools such as choppers and spheroids were documented (H. Li et al., 292 

2019; Zhao et al., 2019). Use wear analysis suggests some tools were used at the site (Li and 293 

Shen, 2011). Lithic refitting attempts indicate stone tools were not submitted to significant 294 

horizontal or vertical post-depositional disturbances (Zhao et al., 2019). 295 
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 297 

Ideal post-depositional and fossilization conditions allowed to recover from layer 10 and 11 a 298 

rich faunal assemblage surpassing 50,000 remains (Li and Dong, 2007; Dong and Li, 2009; 299 

van Kolfschoten et al., 2020). The carnivore guild is diverse and includes, in decreasing 300 

order, Pachycrocuta cf. sinensis, Panthera cf. tigris, Ursus sp., Vulpes sp., Canis cf. lupus, 301 

and Meles sp. Dozens of coprolites from medium-sized carnivores, likely hyena, were 302 

recovered at the site (Wang et al., 2014, 2015). The herbivore guild is dominated by equids, 303 

i.e., Equus hemionus and Equus przewalskii, and bovids, i.e., Bos primigenius. In decreasing 304 

order, the herbivores also include Coelodonta antiquitanis, Sus lyddekeri, Cervus elaphus, 305 

Procapra przewalskii, Cervus (Sika) sp.. Other taxa, e.g., Palaeoloxodon sp., Dicerorhinus 306 

mercki, Hydropotes pleistocenica, Elaphurus davidianus, and Sinomegaceros ordosianus, are 307 

present but in very small proportions, i.e., usually less than five elements per species (van 308 

Kolfschoten et al., 2020). Modifications by carnivore, e.g., pits and scores as well as surface 309 

etching owing to digestion, were seldom observed on the faunal remains (<1%), which 310 

suggests they played a limited role in the accumulation of the assemblage (Zhang et al., 2009, 311 

2011a, 2011b, 2012; Doyon et al., 2018, 2019). The main anthropogenic modifications 312 

recorded on the faunal remains consist of cut marks generated during butchery activities, and 313 

percussion scars likely resulting from the breaking of diaphysis to extract bone marrow. The 314 

skeletal element profiles dominated by body parts with lower nutritional values, the mortality 315 

patterns of the main prey species, i.e., equids and bovids, represented exclusively by prime-316 

adult individuals, and bone surface modifications demonstrate the importance of the Lingjing 317 

site in subsistence activities, namely for the hunting of prey and carcass processing (Zhang et 318 

al., 2009, 2011a, 2011b, 2012). 319 

 320 

A few dozen bone retouchers were identified, which were grouped into two strategies (Doyon 321 

et al., 2018, 2019). The first strategy encompasses 85% of the specimens, and consists of 322 

selecting bone fragments and using them as such for a single retouching event to sharpen the 323 

dull edges of stone tools likely used in butchery activities. The second strategy involves 324 

selecting weathered cervid’s metapodials, marginally modifying them by flaking to produce 325 

an elongated tool with improved ergonomic, transportability and efficiency, and intensively, 326 

and recurrently use them for retouching stone tools. Alongside the bone retouchers, a single 327 

dear antler bears traces of use as soft hammer (Doyon et al., 2018). Surface modifications 328 

observed on a few faunal fragments and their experimental replications suggest some skeletal 329 

remains were used in passive and active pressure flaking activities (Doyon et al., 2019), 330 
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which support Li’s et al. (2019) contention for an independent origin of pressure flaking in 332 

China c.115 ka, i.e., 40,000 years prior to the earliest occurrence of similar behaviour in 333 

Southern Africa (Mourre et al., 2010; d’Errico et al., 2012; de la Peña et al., 2013). 334 

 335 

The use of bone in knapping activities is not restricted to the manufacture and maintenance of 336 

stone tools. Numerous bovids and equids metapodia display a combination of alterations, i.e., 337 

crushing and flaking on the distal condyles as well as evidence of fresh bending fractures 338 

resulting in the sectioning of the distal epiphysis and the main shaft. These modifications 339 

have been interpreted as evidence for the intentional selection and use of bovids and equids 340 

metapodia for knapping mammal long bones in an attempt to extract the marrow it contains 341 

(van Kolfschoten et al., 2020). Interestingly, this behaviour has been also reported at the 342 

Schöningen 13 II-4 site, i.e., the Spear Horizon (van Kolfschoten, 2014; Serangeli et al., 343 

2015; van Kolfschoten et al., 2015; Hutson et al., 2018b, Bonhof and van Kolfschoten, 2021), 344 

which is dated to c. 300 ka BP. 345 

 346 

Perhaps the most unexpected find from layer 11 consists in the identification of two 347 

fragments of medium to large-size mammal rib bearing respectively 10 and 13 sub-parallel 348 

engraved lines. Microscopic analysis indicates these lines were made when the fragments 349 

were already weathered, therefore rejecting the hypothesis that they could represent butchery 350 

cut marks. Analysis of red residues identified in and between the lines engraved on one 351 

specimen demonstrates the presence of red hematite, interpreted as evidence of smearing 352 

ochre over the pattern to make it more visible (Z. Li et al., 2019).  353 

 354 

Formation processes of layers 10 and 11 were investigated with magnetic susceptibility, 355 

sedimentology, X-ray fluorescence (XRF) and X-ray diffraction (XRD) as well as the 356 

orientation and plunge of lithic artefacts. Results suggest a slow deposition rate with limited 357 

to low energy flow across the site. Layer 11 likely formed in a relatively stable, close, 358 

oxygen-poor environment; the deposition of layer 10 occurred at a time when the local water 359 

table was subjected to more frequent rises and falls (H. Li et al., 2018). These conclusions are 360 

supported by the taphonomic analysis of the faunal assemblage. The faunal remains from 361 

layer 10 were mainly affected by weathering; those from layer 11 show significantly more 362 

elements with surfaces covered with concretions and altered by root-etching (Doyon et al., 363 

2019). Palaeoenvironmental reconstruction from pollens recovered in hyena coprolites 364 

suggests a grassland-dominated vegetation with a mosaic of scattered, mixed forests (Wang 365 
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et al., 2014, 2015). This environment, combined with the presence of an active water spring 376 

surely attracted both animals and humans throughout the early Late Pleistocene, as attested 377 

by the uninterrupted vertical distribution of lithic and faunal remains from the lower half of 378 

layer 10 to the bottom of layer 11 (H. Li et al., 2018). 379 

 380 

4. Material and methods 381 

4.1 Archaeological remains 382 

The faunal assemblage from Lingjing, layer 10 and 11, is curated at the Henan Provincial 383 

Institute for Cultural Relics and Archaeology, Zhengzhou, China. From 2005 to 2016, 384 

excavation methods at the site involved removing the sediments with curved-tipped trowels, 385 

3D-plotting faunal and lithic remains with maximum length greater than 2.5cm, and sieving 386 

sediments through a 2mm mesh. Both lithic and faunal remains were cleaned using soft 387 

brushes under running water. When present, concretions were not removed from the faunal 388 

remains. In 2017, the same protocol was implemented, although piece plotting was also 389 

performed for fragments measuring 1–2.5cm in length. The material considered in the present 390 

study comes exclusively from layer 11 and amounts to 1,487 faunal remains. It includes (1) a 391 

sub-sample of 127 bone fragments isolated by one of us (LZ) during the 2005-2015 392 

excavations, and analyzed by two of us (LD, FD) in 2016. The specimens comprised in this 393 

sample, henceforth PBT (Potential Bone Tools), bear features, i.e., flake scars, polish, 394 

impacts, morphology, that have attracted the attention of the excavator and convinced him 395 

they could have been expedient tools; (2) a randomly-selected sub-sample of 100 long bone 396 

fragments from the same excavation years, analyzed by two of us (LD, FD) in 2016. This 397 

sample, henceforth RCS (Restricted Control Sample), was selected with the purpose of 398 

verifying whether PBT or some specimens within PBT stand out in some respects when 399 

compared to RCS or simply represent an extreme in variation of the modifications present in 400 

the assemblage; (3) the entire faunal assemblage yielded by the 2017 excavation of layer 11, 401 

i.e., 1,260 bone fragments, analyzed by one of us (LD) in 2018. Being composed of all faunal 402 

remains recovered that year, including 1-2,5cm-long fragments, this assemblage composed 403 

mainly of diaphyseal fragments (>85%), henceforth CCS (Complete Control Sample), is 404 

particularly appropriate for comparison with bone fragments stemming from our experiments 405 

since we recovered all bone fragments, including those smaller than 2.5cm.  406 

 407 

Each specimen was first examined with a magnifying glass with incident light. 408 

Anthropogenic modifications were distinguished from natural ones based on published 409 
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criteria, with a particular attention on the natural and anthropogenic processes that could 413 

produce flaking scars on faunal remains (Behrensmeyer, 1978; Myers et al., 1980; Binford, 414 

1981; Shipman and Rose, 1983, 1988; Lyman, 1984, 1994; Morlan, 1984; Behrensmeyer et 415 

al., 1986; Noe-Nygaard, 1987, 1989; Villa and Mahieu, 1991; Pérez Ripoll, 1992; Patou-416 

Mathis, 1994; Fisher Jr, 1995; Villa and Bartram, 1996; Villa et al., 2004; Pickering and 417 

Egeland, 2006; Galán et al., 2009; Bourdillat, 2014; Vercoutère et al., 2014; Fernández-Jalvo 418 

and Andrews, 2016; Fourvel, 2017). When identifying the cause for specific bone surface 419 

modifications proved difficult, microscopic observations were conducted using a Leica Wild 420 

M3C stereomicroscope equipped with a Nikon CoolPix 900 digital camera at magnifications 421 

ranging from 4–40x. Selected specimens were photographed with a Canon PowerShot 100 422 

and a Nikon D300 AF equipped with a Micro Nikkor 60 mm f/2.8D lens cameras. 423 

 424 

Morphometric data, i.e., maximum length, width, thickness, and cortical thickness of the 425 

bone fragments, were collected using a digital caliper. The following variables were recorded 426 

for specimens with flake scars: number of scars, their location (cortical or medullar surface, 427 

distal or proximal, one side or both sides), arrangement (isolated, contiguous, interspersed), 428 

and the breath of each flake scar longer than 0.5mm. We included in the contiguous flake 429 

scar category adjacent and overlapping removals. Interspersed series of flake scars refer to 430 

two or more sets of contiguous flake scars separated by an unmodified portion of the 431 

diaphyseal fragment edge. 432 

 433 

4.2 Experimental program 434 

In an attempt to establish if marrow extraction activities could produce a flaking pattern akin 435 

to that observed on the faunal remains from Lingjing, we implemented an experimental 436 

protocol that aimed to fracture large mammal long bones to expose the marrow. We selected 437 

six long bones from an adult Equus caballus: two humeri, two tibiae, one femur, and one 438 

radius. The choice of taxon was motivated by the fact that equids constitute the majority of 439 

the herbivore guild at Lingjing. The horse was killed in Eastern Europe six days prior to the 440 

experiment, and kept in a refrigerated room at 4–5˚C before being shipped to the Nouvelle-441 

Aquitaine region by refrigerated truck the day before the experiment. The meat was removed 442 

overnight by a professional butcher using modern tools and the bones were received with 443 

scraps of meat and connective tissues still attached. They were fractured without previously 444 

removing the periosteum and adhering soft tissues. 445 

 446 
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The fracturing experiment took place on the University of Bordeaux campus. A 6m2 woven 447 

plastic tarp was placed on a grassy ground to ease the recovery of bone fragments. Two 448 

trained experimenters broke the long bones: a 35-40 years-old male, with eight years of 449 

experience (henceforth, Series 1), and a 60-65 years-old male, with ~35 years of experience 450 

(henceforth, Series 2). Their aim was to produce longitudinal diaphyseal fragments while 451 

exposing the marrow. They were free to choose the hitting points and change them 452 

throughout the experiment. The bone was resting on a limestone anvil and was secured with 453 

one hand holding an epiphysis. With a 1.85kg beach pebble serving as hammerstone in the 454 

other hand, the experimenters produced a series of blows on the diaphysis. Two techniques 455 

were used. For Series 1, the experimenter started by hitting multiple times a single point on 456 

the metaphysis, i.e., the transitional zone at which the diaphysis and epiphysis meet. When 457 

cracks started to appear, he did the same on the opposite metaphysis to expand the fracture 458 

from the other end of the bone and, then, exposed the marrow by hitting the diaphysis on its 459 

mid-section. This procedure was applied on one specimen of each skeletal element. For 460 

Series 2, the experimenter hit the diaphysis with a series of rapid, successive blows along the 461 

diaphysis from one metaphysis to the opposite. If the marrow was not exposed following the 462 

first series, he turned the bone to hit it on a second surface. This procedure was applied to one 463 

humerus and one tibia. Although the blows applied to the tibia produced longitudinal 464 

fractures, the periosteum prevented the opening of the diaphysis, which was achieved by 465 

hitting the bone directly on the anvil. The batting technique was not used in our experiment. 466 

This choice was motivated by the fact that no blocks suitable for this fracturing method were 467 

found at the site. 468 

 469 

Throughout the experiment, notes were taken by a third participant (LG) on recording sheets 470 

where the anterior, posterior, medial, lateral, proximal and distal aspects of each element 471 

were illustrated. The information recorded includes the location of the percussion, the 472 

number of blows as well as any qualitative observations made by the experimenters in the 473 

process. Photographs and video recording were done with a Canon PowerShot G7 X Mark II 474 

camera. After the breakage of each bone, all bone fragments and epiphyses were collected in 475 

a single bag associated with an identification code indicating the date of the experiment, the 476 

element, and the series’ number. Broken bones were cleaned separately to avoid loss of small 477 

fragments and/or identification codes at the Laboratoire de Préparation des faunes 478 

(UMR5199 PACEA, University of Bordeaux). This experimental reference collection, 479 

curated at UMR5199 PACEA, is available for studying and teaching purposes. 480 
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 483 

The broken bones were separated into four categories: epiphysis, diaphyseal fragments, 484 

flakes, and splinters. Diaphyseal fragments correspond to large bone pieces preserving at 485 

least 10% of the shaft circumference, where both cortical and medullar surfaces are present 486 

and that can be refitted, at least mentally, to other fragments. Flakes refer to medium-sized 487 

remains, usually larger than 2cm, that were detached either from the cortical or the medullar 488 

surface. The shaft circumference cannot be estimated from this category and, unless bearing 489 

clear anatomical features or a bulb of percussion and/or a morphology matching a flake scar 490 

on a diaphyseal fragment, they prove difficult to refit with other pieces. Splinters consists of 491 

small bone pieces, usually less than 2cm in length. They outnumber any other categories and 492 

sometime preserve small remains of cortical and/or medullar surfaces indicating their original 493 

position within the diaphyseal section. They are too small to allow their refitting to any other 494 

pieces. Epiphyses were not considered in the present study. Morphometric and qualitative 495 

data collection on the cleaned diaphyseal fragments, flakes, and splinters followed the 496 

procedure described for the archaeological samples. In addition, for flakes and splinters, we 497 

established their original position relative to the cortical thickness (cortical, medullar surface, 498 

or unknown), and recorded the presence of the percussion bulb. 499 

 500 

Statistical tests and data representation were performed in R-CRAN (R Development Core 501 

Team, 2008). The maximum lengths recorded on diaphyseal fragments from each sample 502 

were compared with the Kruskal-Wallis non-parametric test because the values were not 503 

normally distributed, therefore preventing the use of an ANOVA. Thickness values were 504 

normally distributed and difference between samples were tested with Student’s t-test. An 505 

ANOVA complemented with a pairwise comparison based on Tukey HDS was applied to test 506 

for significance differences in the number of flake scars recorded on bone fragments from 507 

each sample. 508 

 509 

5. Results 510 

5.1 Experimental data 511 

On average, ~38 blows were necessary to expose the medullar cavity (Fig. 2). This average is 512 

reduced to 25 blows (minimum: 16 blows for the humerus from Series 2; maximum: 34 513 

blows for the tibia from Series 2) when the femur and radius from Series 1 are not 514 

considered, which respectively required 62 and 65 blows to access the marrow. Compared to 515 

fracturing experiments done on cattle long bones (e.g., Blasco et al., 2014; Stavrova et al., 516 
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2019; Vettese et al., 2020b), more blows were required to expose the medullar cavity, which 530 

can be explained by the more invasive and dense spongy bone present in horse’s long bones. 531 

The final blow performed on the tibia from Series 2 resulted in the high fragmentation of its 532 

diaphysis. Remains from the fracturing of Series 2’s tibia are left out of the presentation of 533 

the experimental results; they are, however, included in the comparison with the 534 

archaeological samples (see Section 5.3). 535 

 536 

Both methods used to break the bones produced comparable number of fragments, flakes and, 537 

to a lesser extent, splinters (Tab. 1). Percussion bulbs are present on 35.71% of the flakes and 538 

on 8.66% of splinters (µ = 11.73%). When the original position of flakes and splinters within 539 

the diaphyseal section is examined, both categories show an average of 14.23% specimens 540 

detached from the medullar surface. Flakes are almost six times (5.75 to 1) more likely to be 541 

detached from the cortical surface of the bone than from the medullar one. Likewise, splinters 542 

are twice (2.17 to 1) more likely to detach from the cortical surface. This difference is mainly 543 

due to the high proportion of splinters of unknown origins (55.12%). When size is 544 

considered, and despite a greater dispersion around the mean, Series 1 has consistently 545 

produced fragments with lengths on average three times longer than their widths. The 546 

humerus’ fragments from Series 2, on the other hand, are on average twice as long as they are 547 

large. This result suggests it would have been possible for Palaeolithic hominins to apply 548 

both knapping methods in the event they wanted to produce elongated blanks while 549 

simultaneously exploiting bone marrow. 550 

 551 

Half of the diaphyseal fragments (18 out of 33) bear flake scars (Tab. 2). In almost 90% of 552 

the cases, fragments with clear flake removal scars also bear indubitable impact scars, i.e., 553 

small depressions or crushing of the compacta produced by the protrusion of the object used 554 

to hit the bone shaft, and eventually break it and expose the medullar cavity to access the 555 

marrow. When the location of the flake scars is considered (Tab. 3), they are more often 556 

present on the cortical (48.75%) than on the medullar surface (30.00%) or on both (21.25%). 557 

They also occur mainly on the distal and/or proximal edges of the fragments (51.25%) than 558 

on the sides (28.25%). This pattern is characteristic of comminuted fractures resulting from 559 

high-impact and high-energy compressive trauma on the bone diaphysis (Garnavos et al., 560 

2012). It has been observed in other fracturing experiment, e.g., the breaking of elephant long 561 

bone through a variety of techniques (Backwell and d’Errico, 2004). Flake removals on the 562 

medullar surface of the bone are systematically associated with percussion notches 563 
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presenting, on the medullary view, multiple superimposed conchoidal scars (overlapping 568 

notches sensu Blasco et al., 2014; or percussion notches with inner conchoidal scars sensu 569 

Vettese et al., 2020a). Repeated impacts on a small area of the cortical surface accelerate the 570 

detachment of flakes in, or near, the corresponding area on the medullar surface. 571 

 572 

When the arrangement of flake scars is considered, almost two thirds of them (66.25%) are 573 

isolated. It is rare to count more than two isolated flake scars on a single diaphyseal 574 

specimen. Only two diaphyseal fragments deviate from this rule and present four and seven 575 

flake scars; they respectively come from the fracturing of the femur and radius, i.e., the two 576 

bones from Series 1 that required the greatest number of blows to open the medullar cavity. 577 

Our experiment suggests marrow exploitation can produce contiguous flake scars 28.75% of 578 

the time. Contiguous flake scars vary between two to three per fragments. Only one 579 

diaphyseal fragment from Series 2’s tibia bears six contiguous flake scars at its distal end, 580 

i.e., five on the cortical and one on the medullar surface. Interspersed series of flake scars 581 

were observed only on one specimen (5%), i.e., the radius from Series 1, which presents three 582 

contiguous flake scars at its distal end and a single flake scar on its side, near the distal end. 583 

 584 

5.2 Archaeological data 585 

The faunal remains from Lingjing generally present an excellent state of preservation. The 586 

main taphonomic modification recorded on the faunal assemblage from layer 11 is root 587 

etching (Tab. 4); this damage is observed on 36.31% of the overall remains, and in somewhat 588 

greater proportions when considering only diaphyseal fragments bearing flake scars 589 

(44.93%). No traces of abrasion were observed on the specimen included in this study. 590 

Modification caused by carnivores are rare (1.08%, or 16 specimens out of 1487). The most 591 

common anthropogenic modification consists of butchery cut marks (18.51%). A few impact 592 

scars reflecting deliberate bone fracture were also identified (2.38%). With the exception of 593 

four specimens from the PBT, none of the other diaphyseal fragments with flake scars bears 594 

impact scars that could be interpreted as resulting from bone fracturing activities. The degree 595 

of polish of the surface of faunal remains is quite variable and substantially higher on the 596 

PBT specimens compared to the other two archaeological samples, i.e., RCS and CCS (Tab. 597 

4). 598 

 599 

All samples differ significantly from one another when the size of the fragments is 600 

considered (Kruskal-Wallis c2 = 174.04, df = 2, p < 0.000). This difference is accentuated by 601 
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the underrepresentation of small fragments in PBT and RCS compared to CCS, which can be 610 

explained by the change in recovery procedure of very small fragments implemented in 2017 611 

(Fig. 3, Tab. 2). In all archaeological samples, however, diaphyseal fragments with flake 612 

scars are significantly thicker than those without flake scars (Tab. 4; t = -7.3323, df = 166.42, 613 

p < 0.000), and their cortical thickness indicates most of them comes from medium to large-614 

size mammal long bones. These fragments often also have lengths that nears three times their 615 

width. 616 

 617 

5.3 Comparison between archaeological and experimental diaphyseal fragments 618 

Striking differences appear when comparing archaeological and experimental material. 619 

Impact scars and flake scars are systematically associated on our experimental, diaphyseal 620 

fragments (Tab. 2). Such an association is rarely observed on the faunal remains from 621 

Lingjing. The location and arrangement of flake scars on the experimental fragments show a 622 

remarkable similarity with those recorded on the CCS (Tab. 3). These two sub-samples are 623 

also similar in the proportion of faunal remains by size class in general, and the proportion of 624 

diaphyseal fragments with flake scars by size class in particular (Fig. 4). The specimens from 625 

the PBT and RCS samples feature a substantially larger proportion of specimens with bifacial 626 

flake scars, respectively 54.5% and 33.3%, than what is observed both on the experimental 627 

material and the CCS, respectively 22.2% and 17.6%. The presence of bifacial flake scars on 628 

the lateral edges of archaeological specimens is much higher than on their experimental 629 

counterpart and 68.6% of the diaphyseal fragments from the PBT and RCS show a pattern of 630 

contiguous or interspersed series of flake scars. Such arrangement is extremely rare on the 631 

experimental specimens. 632 

 633 

When the number of the flake scars per specimen is analyzed, significant differences are 634 

observed (Fig. 5a). These differences are especially marked between PBT and all other 635 

samples (F(3,150)=22.78; p < 0.000), both archaeological (PBT:RCS p < 0.000; PBT:CCS p < 636 

0.000) and experimental (PBT:EXP p < 0.000). No significant pairwise differences are 637 

observed between RCS, CCS and the experimental samples as illustrated by their overlapping 638 

values (Fig. 5a; RCS:CCS p = 0.998; RCS:EXP p = 0.796; CCS:EXP p = 0.800). Finally, a 639 

substantial overlap is also observed for all samples in the breath of the flake scars regardless 640 

of their location or arrangement (Fig. 5b). 641 

 642 

6. Discussion 643 
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We argue that a subsample of the remains composing the PBT and RCS must be interpreted 656 

as expedient bone tools. This diagnosis is based on several lines of evidence. The low 657 

percentage of carnivore modifications and the high proportion of remains with cut marks 658 

suggest Palaeolithic hominins were the main agent for the accumulation of the faunal 659 

assemblage recovered in layer 11 (Zhang et al., 2011a, 2011b; Doyon et al., 2018, 2019; van 660 

Kolfschoten et al., 2020). The uninterrupted vertical distribution of both lithic and animal 661 

remains, the low plunge of the lithic artefacts (H. Li et al., 2018), and evidence from lithic 662 

refitting (Zhao et al., 2019) argue for a continuous deposition of the archaeological remains 663 

between 125 and 105 kyr with minimal post-depositional disturbance. Between 100 and 13.5 664 

kyr, the site appears to have been abandoned, perhaps owing to the drying of the water 665 

spring. This change in environmental conditions favoured the accumulation of a ~4.5m loess 666 

layer sealing the early late Pleistocene occupation and protecting it from dynamic processes 667 

that could have modified the underlying archeological assemblage. 668 

 669 

Aware that some peculiar-looking faunal fragments had been isolated during the 2005-2015 670 

excavations owing to their polished surfaces and the presence of flake scars, it was 671 

imperative to compare these with a larger sample, i.e., a random selection from the same 672 

excavation years and the entire assemblage recovered from layer 11 in 2017. Size difference 673 

between the fauna from 2017 and 2005-2015 highlights a bias attributed to the change in 674 

recovery methods implemented in 2017, a modification of sampling procedure that had the 675 

effect of significantly increasing the proportions of small faunal remains. When both sub-676 

samples from the 2005-2015 excavations were compared, i.e., PBT and RCS, the proportion 677 

of fragments with flake scars diminishes from 60.6% in PBT to 44.0% in RCS. Many of these 678 

fragments present contiguous, or interspersed series of flake scars. This pattern is even more 679 

striking when we consider that only 1.3% of the faunal remains from the 2017 excavations 680 

bear flake scars, or 8% when leaving aside the 1,047 remains measuring less than 25mm in 681 

length. In the 2017 sample, flake scars are predominantly present on the cortical and medullar 682 

surfaces, and at the proximal and/or distal ends of these fragments. It would therefore appear 683 

that the difference in excavation methods cannot, in and of itself, explain the differences in 684 

the proportion of diaphyseal fragments with flake scars or the location of these scars on the 685 

faunal remains. 686 

 687 

Mortality patterns, skeletal element representation and anthropogenic modification on the 688 

faunal remains (Zhang et al., 2009, 2011a, 2011b, 2012), as well as the osseous and lithic 689 
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toolkit (Doyon et al., 2018, 2019; H. Li et al., 2019; Zhao et al., 2019; van Kolfschoten et al., 691 

2020) are coherent with the interpretation according to which Lingjing was repeatedly used 692 

as a kill/butchery site during the early Late Pleistocene. In order to explore anthropogenic 693 

activities that could have resulted in the production of flake scars on faunal fragments, it 694 

became necessary to assess to what extent marrow extraction could generate such a pattern. 695 

Our experimental results show that fracturing long bone diaphysis to expose the medullar 696 

cavity can produce diaphyseal fragments with flake scars half of the time. However, these 697 

scars are found in limited number, rarely exceeding four per fragments, and they seldom 698 

occur contiguously nor in interspersed series. When both the proportions of faunal fragments 699 

in general, and those bearing flake scars in particular, are considered, our experimental data 700 

closely matches the pattern emerging from the CCS. Likewise, all the specimens with 701 

contiguous flake scars from the RCS fall within the range of variation of our experimental 702 

data, both in terms of number of flake scars per item and their breath. The most important 703 

difference between the experimental and the archaeological samples refers to the co-704 

occurrence of impact scars and flake scars. These two anthropogenic modifications were 705 

recorded on ~90% of the experimental sample but were only seldom observed on 706 

archaeological specimens. Finally, we do not find in our experimental material the high 707 

prevalence of long bone fragments observed in the PBT sample with numerous contiguous 708 

and interspersed series of flake scars. Considering the sedimentary context, the rarity of 709 

carnivore modifications on all examined samples and the fact that experimental deliberate 710 

flaking of bone fragments of the same type and size produce flake scars comparable to those 711 

observed on the archeological specimens (ETTOS, 1985; Vincent, 1993; Romandini et al., 712 

2015; Baumann et al., 2020), we must conclude that a subsample of PBT and RCS should be 713 

interpreted as composed by bone fragments that were deliberately modified through 714 

percussion by Lingjing hominins. The most probable goal of this behaviour was that of using 715 

the resulting retouched bone fragments as tools. 716 

 717 

The comparison between the archaeological and experimental data suggests a number of 718 

qualitative and quantitative criteria could help distinguish faunal remains with flake scars that 719 

were intentionally modified for technological purpose from those that result from carcass 720 

processing activities such as marrow exploitation, even in the absence of a well-developed 721 

use wear polish. From a contextual perspective, if carnivores had a limited role in the 722 

accumulation, or attrition (e.g., Wadley, 2020), of the faunal assemblage and if this 723 

assemblage was not subjected to important dynamics processes after its deposition, a low 724 
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percentage in the co-occurrence of marrow extraction impact scars and flake removal scars 725 

on diaphyseal fragments from medium to large-sized mammal long bones is a good indicator 726 

that some of these specimens may have been intentionally shaped by direct percussion. From 727 

a quantitative perspective, this interpretation can be further supported when specimens bear 728 

more than six flake scars and when their arrangement show a high frequency of contiguous, 729 

and/or interspersed series of, scars. Although most of the fragments in our experimental 730 

sample bore four scars or less, we err on the side of caution and extend this threshold to 731 

include values included between µ and µ + 1s. Our conclusions are almost entirely 732 

compatible with those reached by Backwell and d’Errico (2004). Their comparison between a 733 

large sample from Olduvai and an experimental sample knapped on elephant bones led these 734 

authors to suggest that diaphyseal fragments “bearing five or more flake scars, some of which 735 

are contiguous, with one or more anomalously invasive [i.e., larger than 40mm in breath] 736 

primary removals” (Backwell and d’Errico, 2004, pp. 148, 150) were likely to have been 737 

intentionally modified into expedient tools. In our analysis, however, the breath of flake scars 738 

doesn’t seem to be a good indicator for the intentional shaping of diaphyseal fragments. This 739 

may be due to the fact that Backwell and d’Errico experimented on elephant bones, which 740 

allows the development of more invasive flake scars. Simply put, flake scars size doesn’t 741 

seem to matter as much as their frequency and arrangement.  742 

 743 

Based on these criteria, we can interpret 56 diaphyseal fragments, i.e., 49 of the PBT and 7 in 744 

the RCS, from the Lingjing, layer 11, faunal assemblage considered in the present study as 745 

having been intentionally modified by direct percussion (Figs. 6-7, SI Tab. 1). Their compact 746 

bone thicknesses measure 14.6mm on average (s = 5.51mm), and their maximum lengths are 747 

usually 2.72 times longer than their widths (s = 0.87). More than three quarters of them 748 

(78.6%) show evidence of fresh fractures which suggests they were modified while the bone 749 

was still green. Two thirds of them (67.9%) bear flake scars on both their cortical and 750 

medullar surfaces. The number of flake scars per specimens varies from seven to 24 (µ = 751 

12.8; s = 5). The lateral edges of the diaphyseal fragments are often modified (cortical 752 

surface: 71.4%; medullar surface = 42.9%) with either contiguous (51.8%) or interspersed 753 

series (48.2%) of flake removals that regularly extend up to the proximal or distal end of the 754 

fragments (Fig. 8). 755 
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The production of expedient bone tools at Lingjing provides a new outlook on the prehistoric 762 

lifeways of the human groups who visited the site. The presence of a water spring in a 763 

grassland-dominated environment with a mosaic of scattered, mixed forests surely attracted 764 

both animals and humans, and provided these individuals with a reliable hunting spot at the 765 

beginning of the Late Pleistocene. When undertaking a hunting trip, these hunters could 766 

anticipate their needs at the hunting grounds and collect a few quartz and quartzite pebbles 767 

along the way in the riverbeds located in the vicinity of the site to complement the few tools 768 

made of allochthonous material they had in their possession. Following a successful kill, 769 

lithic tool manufacture and butchery activities appear to have been undertaken at the site. 770 

Although some steps of the operational sequence guiding the production of expedient bone 771 

tools are still missing, it appears the Lingjing visitors targeted thick, elongated diaphyseal 772 

fragments to modify their edges by direct percussion. The fractures present on these tools 773 

indicate bone fragments were knapped while still being fresh. A thorough survey of the 774 

location of impact scars on medium-sized mammalian long bones could help us determine 775 

whether or not a particular fracturing method was implemented in order to access the marrow 776 

while producing elongated diaphyseal fragments. The predominance of flake removal scars 777 

on lateral edges, sometime extending all the way to the proximal or distal end of the 778 

fragment, implies a modification oriented towards the production of a long, sharp edge. 779 

Comparing the size of these fragments with that of unretouched lithic flakes and lithic tools 780 

from the same layer reveals an interesting pattern (Fig. 9). Such comparison suggests these 781 

bone fragments may have been specifically targeted by the humans visiting Lingjing to 782 

complement the small size of the lithics composing their toolkit. The function of the bone 783 

tools is a topic to be explored. However, considering that processing carcasses of large and 784 

medium size prey has certainly been one of the functions the site has fulfilled, it is likely that 785 

these expedient tools were used in butchery or hide processing activities. An experimental 786 

and use wear program is currently being implemented to test this hypothesis.  787 

 788 

Our results have implications on our understanding of human behavioural variability during 789 

the Middle to Late Pleistocene transition in China. Research undertaken at Lingjing shows 790 

the importance of bone as a raw material in the technological system of the human groups 791 

that visited the site during this period. Bone tools were use in a variety of stone knapping 792 

activities (Doyon et al., 2018, 2019), as implements fit to knap bones to allow marrow 793 

extraction (van Kolfschoten et al., 2020), and as a mean to permanently record information in 794 

the form of engraved patterns (Z. Li et al., 2019). When adding the evidence from the present 795 
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study, it appears clearly that the visitors at Lingjing not only understood the mechanical 801 

properties of osseous raw material but, most importantly, knew how to take advantage of 802 

them in a variety of subsistence, and perhaps symbolic, activities. The diversity of functions 803 

for which bone tools were used is also compelling. It reinforces the view that the 804 

technological system at Lingjing likely represents an expression of a long-lasting tradition 805 

whose origin and development remain to be established (Doyon et al., 2019). On the other 806 

hand, the Lingjing case further highlights the inability of lithic technology to adequately 807 

describe the whole breath of behavioural variability for the humanities that preceded us. 808 

Careful consideration of the faunal assemblages, both from a taphonomic and a technological 809 

perspective, especially in East Asia, now allow us to perceive a level of technological 810 

complexity that is entirely comparable to penecontemporaneous evidence from other regions 811 

of the Old World (Wei et al., 2016; Zhang et al., 2016, 2018; Pitarch Martí et al., 2017; Y. 812 

Wei et al., 2017; d’Errico et al., 2018; Z. Li et al., 2019; Li et al., 2020).We can only hope the 813 

recent discoveries from Lingjing and other sites will encourage a careful re-examination of 814 

faunal assemblages from these perspectives to further our understanding of the cultural 815 

trajectories of the technological systems before and after the dispersal of our species in the 816 

region. 817 
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Legends 1319 
 1320 
Figure legends 1321 
 1322 
Fig. 1 Location of the Lingjing site, and schematic representation of the stratigraphy (from 1323 

Doyon et al., 2018). 1324 
 1325 
Fig. 2 Location and frequency of the blows produced with a hammerstone during the 1326 

experimental marrow extraction on Equus caballus long bones (for each element, 1327 
from left to right, anterior, posterior, medial, and lateral aspect). (a-d) Series 1: (a) 1328 
femur, (b) tibia, (c) humerus, (d) radius. (e-f) Series 2: (e) tibia, (f) humerus. Scale = 1329 
10 cm. 1330 

 1331 
Fig. 3 Relative frequencies of faunal fragments from Lingjing, layer 11, per maximum 1332 

length (mm) size class. Dark green: PBT and RCS combined; Yellow: CCS; Light 1333 
green: area of overlap between both frequency distributions. Notice the 1334 
underrepresentation of small faunal remains in the assemblage from the PBT and 1335 
RCS. 1336 

 1337 
Fig. 4 Frequencies of faunal fragments (in grey) and of specimens bearing flake scars (in 1338 

blue) per maximum length (mm) size class. (a) PBT; (b) RCS; (c) CCS; (d) 1339 
experimental Series 1 and Series 2 combined. 1340 

 1341 
Fig. 5 (a) Number, and (b) breath (mm) of flake scars documented on the specimens 1342 

considered in the present study by location, arrangement and sub-sample. The 1343 
sample code contains information on: 1) the location of the flake scars: U = unifacial 1344 
(no distinction between cortical and medullar surfaces), B = bifacial; 2) the sub-1345 
sample: PBT = Potential Bone Tools (dark green), RCS = Restricted Control Sample 1346 
(light green), CCS = Complete Control Sample (yellow), Exp. S1 = Experimental 1347 
Series 1 (light blue), Exp. S2 = Experimental Series 2 (dark blue); 3) the 1348 
arrangement of the flake scars on each specimen: iso = isolated, con = contiguous, 1349 
int = interspersed series. The grey band refers to µ ± 1s for the minimal and 1350 
maximal mean values recorded on the experimental sub-samples. 1351 

 1352 
Fig. 6 Sample of diaphyseal fragments bearing flake scars from Lingjing, layer 11, 1353 

interpreted as expedient osseous tools. Refer to SI Table 1 for data. Scales = 1cm. 1354 
 1355 
Fig. 7 Sample of diaphyseal fragments bearing flake scars from Lingjing, layer 11, 1356 

interpreted as expedient osseous tools. Refer to SI Table 1 for data. Scales = 1cm. 1357 
 1358 
Fig. 8 Close-up views of a sample of diaphyseal fragments bearing flake scars from 1359 

Lingjing, layer 11. Dots indicate the location of flake scars produced by direct 1360 
percussion. Notice the variability in the flaking pattern and distribution. Scales = 1361 
1cm. 1362 

 1363 
Fig. 9 Morphometric comparison between the unretouched lithic flakes (green), lithic tools 1364 

(blue) and expedient osseous tools (red) from Lingjing, layer 11. Data for the lithic 1365 
remains extracted from Zhao et al., 2019, Fig. 3. 1366 
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Table legends 1378 
 1379 
Tab. 1 Proportion of specimens bearing a percussion bulb, relative frequencies of the origin 1380 

of fragments, flakes, and splinters, and morphometric data of the remains produced 1381 
during the experimental marrow extraction on Equus caballus long bones by 1382 
experimenter. 1383 

 1384 
Tab. 2 Summary of the morphometric data for the samples considered in the present study 1385 

and comparison with specimens bearing flake scars by sample. 1386 
 1387 
Tab. 3 Relative proportion for the location and arrangement of flake scars by sample 1388 

considered in the present study. 1389 
 1390 
Tab. 4 Morphometric data on the compacta thickness and relative frequencies for natural 1391 

and anthropogenic alterations recorded on the archaeological samples from Lingjing, 1392 
layer 11, based on the presence or absence of flake scars on the specimens. 1393 

 1394 
SI Table legends 1395 
 1396 
SI Tab. 1 Contextual, taphonomic, and morphometric data for the diaphyseal fragments 1397 

bearing flake scars from Lingjing, layer 11, interpreted as expedient osseous 1398 
tools. Note: With regards to the breath of flake scars, empty cells were added to 1399 
signal a discontinuity between two flake scars or series of flake scars. This affects 1400 
only the specimens on which interspersed series were observed. 1401 

  1402 
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Fig. 1 Location of the Lingjing site, and schematic representation of the stratigraphy (from 1403 
Doyon et al., 2018). 1404 
 1405 
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Fig. 2 Location and frequency of the blows performed with a hammerstone during the 1409 
experimental marrow extraction on Equus caballus long bones (for each element, from left to 1410 
right, anterior, posterior, medial, and lateral aspect). (a-d) Series 1: (a) femur, (b) tibia, (c) 1411 
humerus, (d) radius. (e-f) Series 2: (e) tibia, (f) humerus. Scale = 10 cm. 1412 
 1413 
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Fig. 3 Relative frequencies of faunal fragments from Lingjing, layer 11, per maximum 1418 
length (mm) size class. Dark green: PBT and RCS combined; Yellow: CCS; Light green: area 1419 
of overlap between both frequency distributions. Notice the underrepresentation of small 1420 
faunal remains in the assemblage from the PBT and RCS. 1421 
 1422 
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Fig. 4 Frequencies of faunal fragments (in grey) and of specimens bearing flake scars (in 1427 
blue) per maximum length (mm) size class. (a) PBT; (b) RCS; (c) CCS; (d) experimental 1428 
Series 1 and Series 2 combined. 1429 
 1430 
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Fig. 5 (a) Number, and (b) breath (mm) of flake scars documented on the specimens 1437 
considered in the present study by location, arrangement and sub-sample. The sample code 1438 
contains information on: 1) the location of the flake scars: U = unifacial (no distinction 1439 
between cortical and medullar surfaces), B = bifacial; 2) the sub-sample: PBT = Potential 1440 
Bone Tools (dark green), RCS = Restricted Control Sample (light green), CCS = Complete 1441 
Control Sample (yellow), Exp. S1 = Experimental Series 1 (light blue), Exp. S2 = 1442 
Experimental Series 2 (dark blue); 3) the arrangement of the flake scars on each specimen: 1443 
iso = isolated, con = contiguous, int = interspersed series. The grey band refers to µ ± 1s for 1444 
the minimal and maximal mean values recorded on the experimental sub-samples. 1445 
 1446 
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Fig. 6 Sample of diaphyseal fragments bearing flake scars from Lingjing, layer 11, 1451 
interpreted as expedient osseous tools. Refer to SI Table 1 for data. Scales = 1cm. 1452 
 1453 
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Fig. 7 Sample of diaphyseal fragments bearing flake scars from Lingjing, layer 11, 1458 
interpreted as expedient osseous tools. Refer to SI Table 1 for data. Scales = 1cm. 1459 
 1460 
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Fig. 8 Close-up views of a sample of diaphyseal fragments bearing flake scars from 1469 
Lingjing, layer 11. Dots indicate the location of flake scars produced by direct percussion. 1470 
Notice the variability in the flaking pattern and distribution. Scales = 1cm. 1471 
 1472 
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Fig. 9 Morphometric comparison between the unretouched lithic flakes (green), lithic tools 1475 
(blue) and expedient osseous tools (red) from Lingjing, layer 11. Data for the lithic remains 1476 
extracted from Zhao et al., 2019, Fig. 3. 1477 
 1478 
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Tab. 1 Proportion of specimens bearing a percussion bulb, relative frequencies of the origin 1483 
of fragments, flakes, and splinters, and morphometric data of the remains produced during 1484 
the experimental marrow extraction on Equus caballus long bones by experimenter. 1485 
 1486 

 1487 
 1488 
  1489 

% Cortical
% 

Medular
% Both

% 
Unknown

Maximum 
Length

Maximum 
Width

Maximum 
Thickness

µ 102.06 33.84 16.79

! 45.97 14.01 14.89

µ 31.38 13.66 3.98

! 12.86 3.07 0.91

µ 11.06 5.58 2.14

! 5.95 2.81 1.13

µ 102.15 33.05 17.05

! 26.71 9.19 7.34

µ 43.25 16.95 9.00

! 8.90 6.17 4.29

µ 14.10 5.95 2.22

! 5.60 2.90 1.25

µ 97.82 37.99 24.22

! 34.38 13.36 14.44

µ 21.59 16.90 12.45

! 1.26 5.26 7.87

µ 19.09 7.47 3.25

! 10.43 2.84 2.26

µ 190.78 59.48 35.10

! NA NA NA

µ 56.61 20.14 8.55

! 21.17 7.30 2.49

µ 21.81 7.22 2.90

! 15.34 3.94 2.07

µ 133.30 64.20 42.66

! 23.01 10.72 16.98

µ 34.01 18.38 5.96

! 10.75 4.67 3.24

µ 12.93 7.08 3.19

! 4.92 3.21 1.90

µ 66.04 28.76 15.67

! 19.41 8.77 5.19

µ 37.48 14.17 33.60

! 8.91 3.10 117.21

µ 13.16 17.47 2.46

! 5.87 118.38 1.39

   * percentage of each remain category bearing a percussion bulb

Dimensions (in mm)

Series Element Category n
% w/ 
perc. 
bulb*

1.85% 12.04% 13.89% 0.93% 73.15%

Flakes & Splinters' Origin

9.52% 23.81% 42.86% 19.05% 14.29%

42.86% 42.86% 0.00% 42.86% 14.29%

7.14%

10.71% 50.00%

14.29% 14.29% 57.14%

66.67% 33.33% 33.33% 33.33% 0.00%

12.12% 27.27% 6.06% 9.09% 57.58%

25.00% 37.50% 12.50% 50.00% 0.00%

17.65% 29.41% 11.76% 0.00% 58.82%

28.57% 42.86% 28.57% 28.57%

4

7

14

9

0.00%

0.00% 27.78% 16.67% 5.56% 50.00%

33.33% 100.00% 0.00% 0.00% 0.00%

0.00% 14.29%

14.29%

25.00%

21

108

8

3

28

2

3

33

Splinter

Fragment

Flake

Splinter

Splinter

Fragment

Flake

3

7

18

7

8

34

Splinter

Fragment

Flake

Tibia

2

Fragment

Flake

Splinter

Fragment

Flake

Splinter

Fragment

Flake

1 Humerus

Radius

Femur

Tibia

Humerus
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Tab. 2 Summary of the morphometric data for the samples considered in the present study 1490 
and comparison with specimens bearing flake scars by sample. 1491 
 1492 

 1493 
 1494 
  1495 

Deleted: ¶1496 

Origin Sample Year n Maximum 
Length

Maximum 
Width

Maximum 
Thickness n % Maximum 

Length
Maximum 

Width
Maximum 
Thickness

µ 80.44 29.47 13.73 µ 86.64 32.09 14.85

! 39.64 13.81 8.51 ! 41.44 15.22 8.78

µ 56.66 21.32 11.82 µ 61.95 24.45 12.27

! 25.15 10.36 6.31 ! 27.95 8.21 4.97

µ 45.76 21.03 11.82 µ 86.92 33.96 17.46

! 30.37 13.03 9.07 ! 37.52 13.35 7.87

µ 31.94 11.91 5.28 µ 125.11 40.92 21.62

! 35.94 11.96 7.33 ! 48.41 14.23 10.70

µ 23.04 17.96 8.40 µ 92.37 41.83 24.95
! 24.00 96.63 42.95 ! 43.70 19.56 13.26

8 88%

1260

All faunal remains Only faunal remains with flake removal scars

154

77 5%

44 0%

17 0%

10 90%

163

PBT
Archaeological

Experimental

RCS

CCS

Series 1

Series 2

2005-2015

2005-2015

2017

2020

2020

127

100

 PBT = Potential bone tools; RCS = Restricted control sample; CCS = Complete control sample (see section 4.1 for details on the sampling).
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Tab. 3 Relative proportion for the location and arrangement of flake scars by sample 1497 
considered in the present study. The colour ramp is automatically formatted from orange 1498 
(low) to green (high) based on the percentage distribution for each sample to ease comparison 1499 
and accounts for sample size difference. 1500 
 1501 

 1502 
 1503 
  1504 

Deleted: ¶1505 

Isol. Cont.
Int. 
Ser.

Isol. Cont.
Int. 
Ser.

Isol. Cont.
Int. 
Ser.

4 sides

Prox AND/OR Dist 20.0% 10.0% 10.0%

Prox AND/OR Dist AND Lat 10.0% 30.0%

Lat ONLY 1 10.0%

Lat ONLY 2 10.0%

4 sides

Prox AND/OR Dist 25.0% 25.0% 12.5%

Prox AND/OR Dist AND Lat

Lat ONLY 1 12.5% 25.0%

Lat ONLY 2

4 sides 1.3% 5.2%

Prox AND/OR Dist 9.1% 3.9% 2.6%

Prox AND/OR Dist AND Lat 5.2% 2.6% 1.3% 1.3% 14.3% 19.5%

Lat ONLY 1 2.6% 14.3% 1.3% 2.6% 2.6% 5.2%

Lat ONLY 2 2.6% 1.3% 1.3%

4 sides

Prox AND/OR Dist 9.5% 4.8% 9.5% 2.4%

Prox AND/OR Dist AND Lat 4.8% 7.1% 4.8% 2.4% 4.8% 9.5%

Lat ONLY 1 9.5% 2.4% 11.9% 9.5% 2.4% 2.4%

Lat ONLY 2 2.4%

4 sides

Prox AND/OR Dist 11.8% 23.5% 5.9%

Prox AND/OR Dist AND Lat 11.8% 5.9% 11.8%

Lat ONLY 1 5.9% 11.8%

Lat ONLY 2 5.9% 5.9%

Exp. Series 1   
(n  = 10)

Exp. Series 2  
(n  = 8)

PBT                
(n  = 77)

Cortical Endosteal Bifacial
Location of flake             
removal scars

Sample

  PBT = Potential bone tools; RCS = Restricted control sample; CCS = Complete control sample (see section 4.1)

  Isol. = Isolated; Cont. = Contiguous; Int. Ser. = Interspersed series
  Prox = Proximal end; Dist = Distal end; Lat = Lateral edge

RCS                
(n  = 44)

CCS                
(n  = 17)
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Tab. 4 Morphometric data on the compacta thickness and relative frequencies for natural and 1506 
anthropogenic alterations recorded on the archaeological samples from Lingjing, layer 11, 1507 
based on the presence or absence of flake scars on the specimens. 1508 
 1509 

 1510 

Sample n µ ! Root 
etching Scoring Diges-

tion

Marrow 
extrac-

tion

Cut 
marks Low Medium High None Low Medium High None Low Medium High None

PBT 77 9.36 4.00 42.9% 3.9% 1.3% 5.2% 33.8% 14.3% 54.5% 22.1% 9.1% 32.5% 40.3% 5.2% 22.1% 26.0% 46.8% 10.4% 16.9%

RCS 44 9.18 5.42 43.2% 0.0% 0.0% 0.0% 18.2% 38.6% 11.4% 0.0% 50.0% 15.9% 4.5% 0.0% 79.5% 11.4% 4.5% 0.0% 84.1%

CCS 17 8.61 3.58 58.8% 0.0% 0.0% 0.0% 0.1% 5.9% 0.0% 5.9% 0.0% 0.0% 0.0% 5.9% 94.1% 0.0% 5.9% 0.0% 94.1%

PBT 50 6.73 2.84 30.0% 10.0% 8.0% 6.0% 24.0% 26.0% 24.0% 10.0% 40.0% 16.0% 10.0% 0.0% 74.0% 12.0% 12.0% 0.0% 76.0%

RCS 56 7.02 4.03 32.1% 0.0% 0.0% 1.8% 14.3% 42.9% 1.8% 0.0% 55.4% 12.5% 0.0% 0.0% 87.5% 8.9% 0.0% 0.0% 91.1%

CCS 1243 5.79 3.03 35.8% 0.3% 0.4% 2.2% 17.8% 6.4% 0.6% 0.0% 93.0% 3.9% 0.2% 0.0% 95.9% 1.2% 0.9% 0.0% 97.9%

 PBT = Potential bone tools; RCS = Restricted control sample; CCS = Complete control sample (see section 4.1 for details on the sampling).

With flake 
removal 
scars

Without 
flake 
removal 
scars

 2005 Isol. = Isolated specimens from the 2005-2015 excavations; 2005 Rand. = Randomly-selected specimens from the 2005-2015 excavations; 2017 All = Faunal assemblage from the 2017 excavation of layer 11.

Polish
Compacta 

Thickness (mm) Cortical surface Medullar surface EdgesCarnivore
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