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ABSTRACT	9 
Our	collaborative	work	began	in	2019	with	the	intent	to	overcome	obstacles	that	had	arisen	10 
from	 the	 inability	 to	 access	 curated	 artifact	 collections	 from	 remote	 locations.	 It	was	 our	11 
specific	aim	to	not	only	create	digital	twins	of	excavated	objects	that	could	not	be	exported	12 
out	of	their	country	of	origin,	but	also	to	emphasize	the	contextual	associations	of	objects	13 
residing	 in	 hidden	 museum	 collections	 using	 a	 range	 of	 digital	 techniques.	 As	 part	 of	 a	14 
growing	field	project	 in	2022,	machine	 learning	(ML)	with	YOLOv5,	a	 family	of	compound-15 
scaled	object	detection	models	trained	on	the	COCO	dataset	was	used	to	classify	visual	data	16 
and	 advance	 our	 understanding	 of	 in	 situ	 archaeological	 phenomena	 prior	 to	 destructive	17 
fieldwork.	 While	 not	 the	 sole	 contribution,	 the	 use	 of	 object-based	 machine	 learning	18 
improved	 quality	 and	 range	 of	 information	 obtained	 in	 non-destructive	 site	 surveys	 and	19 
improved	 data	 sharing	 capacity.	 Despite	 challenges	 encountered	 while	 training	 the	20 
algorithm	and	classifying	objects,	combining	ML	with	drone	data	collection	will	continue	as	21 
part	of	 our	 long-term	 spatial	 data	 recording	procedure.	Despite	both	 success	 and	 failures	22 
reported	 here,	 this	 work	 contributes	 to	 greater	 standardization	 of	 ML	 techniques	 in	23 
archaeological	practice.	24 
	25 
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Introduction	29 

As	part	of	our	 growing	 field	project	 in	2022,	we	applied	machine	 learning	with	YOLOv5	 (DeepLearning	30 
2020;	 Jocher2020),	a	 family	of	compound-scaled	object	detection	models	 trained	on	 the	COCO	dataset	31 
(see	PyTorch	2023)	 to	classify	visual	data	and	advance	our	understanding	of	 in	 situ	phenomena	on	 the	32 
ground	 prior	 to	 conducting	 destructive	 archaeological	 fieldwork.	 Beyond	 what	 have	 become	 well-33 
established	digital	field	and	laboratory	methods	in	archaeology	(e.g.	high-resolution	data	capture,	instant	34 
digital	 recording	 and	 transfer	 with	 tablets	 and	 other	 small	 devices)	 over	 the	 past	 few	 decades,	 the	35 
application	of	Machine	Learning	(ML)	for	Unmanned	Aerial	Vehicle	(UAV)	and	ground-captured	imagery	36 
was	expected	 to	greatly	expand	our	ability	 to	 select	areas	 for	 intensified	 investigation	or	excavation	 in	37 
expedient,	non-destructive	ways.	Expanding	on	what	we	had	learned	while	analyzing	physical	collections	38 
in	previous	field	and	laboratory	analyses	(see	Sharp	2019),	the	development	of	a	neural	network	that	was	39 
aimed	directly	at	survey	presented	several	unforeseen	challenges.		40 

Although	some	initial	challenges	while	learning	to	train	the	algorithm	and	classify	objects	left	much	work	41 
to	 be	 done,	 ML	 on	 archaeological	 survey	 data	 captured	 with	 UAV	 will	 continue	 to	 be	 more	 tightly	42 
integrated	into	our	standard	data	collection	procedure	in	the	field.	With	intensifying	efforts	to	integrate	43 
ML	into	various	disciplines	and	industry,	however,	we	find	ourselves	in	relatively	uncharted	territory	with	44 
few	 applied	 archaeological	 models	 to	 follow	 (but	 see	 Bonhage	 et	 al.	 2021;	 Caspari	 and	 Crespo	 2019;	45 
Orengo	et	al.	2021;	Sakai	et	al.	2023).		46 

Upon	our	return	to	the	field	in	2022	after	a	three-year	hiatus,	we	discovered	that	some	areas	of	our	study	47 
area	 had	 become	 dangerous	 and	 inaccessible,	 necessitating	 the	 incorporation	 of	 remote	 sensing	48 
technology	 in	 our	 initial	 surveys.	 The	 application	 of	 ML	 object/structure	 detection	 was	 expected	 to	49 
facilitate	 not	 only	 precision	 recording	 of	 all	 areas	 of	 interest	 but	 also	 to	 help	 determine	 various	50 
environmental	 risk	 factors	 like	El	Niño/La	Niña	climate	 fluctuations.	Additionally,	we	were	hopeful	 that	51 
our	non-destructive	site	monitoring	data	would	assist	with	heritage	preservation	issues	that	would	arise	52 
in	 the	 future	 (e.g.,	 Caster	 et	 al.	 2022).	 This	 paper	 discusses	 our	 successes	 and	 failures	 and	 future	53 
directions	 of	 our	 work	 in	 northern	 Peru,	 with	 the	 primary	 aim	 to	 contribute	 to	 the	 dialogue	 at	 this	54 
transformational	moment	 in	 digital	 archaeology.	 Looking	 toward	 the	 future	 and	 aiming	 to	 foreshadow	55 
challenges	that	our	project	and	others	will	face,	we	urge	for	intensified	efforts	toward	standardization	of	56 
practice	 and	 integration	 of	 streamlined	 methods	 in	 this	 fast-expanding	 branch	 of	 computational	57 
archaeology.	58 

Implementing	YOLO	for	UAV	and	Ground-based	Image	Classification	and	Analysis	59 
	60 
In	2022,	we	applied	UAV-remote	sensing	and	deep	learning	in	our	survey	season	to	increase	the	amount	61 
of	 terrain	our	 small	 team	could	 study	over	 the	 ten-day	period.	 In	anticipation	of	 training	a	dataset	 for	62 
automated	 object	 detection	 and	 classification,	 we	 used	 digital	 cameras	 and	 “LiDAR”	 enabled	63 
smartphones	with	GPS	to	augment	the	range	of	data	that	our	survey	teams	encountered	on	the	ground	64 
(and	which	were	expected	 to	be	encountered	 in	 the	 future).	As	we	have	witnessed	 in	other	 cases,	we	65 
anticipated	the	quality	and	coverage	of	data	collected	to	improve	dramatically	using	these	cost-effective	66 
techniques	and	highly	portable	tools.	Additionally,	we	aimed	to	test	the	feasibility	of	applying	UAV	in	our	67 
proposed	long-term	research;	one	of	several	non-destructive	survey	techniques	that	we	are	hopeful	will	68 
become	standardized	for	surveys	in	challenging	topographical,	environmental,	or	biodiverse	terrain.		69 
	70 
In	this	regard,	the	range	of	circumstances	we	confronted	in	regional	surveys	are	both	long-standing	and	71 
recent.	In	northern	coastal	Peru,	concerns	that	have	become	more	prominent	are	the	result	of	increased	72 
frequency	of	extreme	climate	events,	as	well	as	reduced	site	monitoring	and	protection	capacity	over	the	73 
past	five	years.	Given	the	challenging	environment	and	sometimes	perilous	terrain,	the	ability	of	UAV	to	74 
ensure	the	safety	of	field	crews	makes	it	an	ideal	choice.		75 
	76 
Nepal	 and	 Eslamiat	 (2022)	 provided	 the	 context	 and	 justification	 for	 using	 UAV	 drones	 as	 one	 of	 this	77 
season’s	 survey	 method.	 UAVs	 have	 already	 been	 employed	 in	 numerous	 domains,	 including	 traffic	78 
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monitoring,	surveillance,	inspection,	surveys,	etc.	UAV	use	in	contemporary	fieldwork	is	transforming	the	85 
way	 the	 world	 is	 viewed	 as	 real-time	 deep	 learning	 algorithms	 increase	 both	 speed	 and	 accuracy	 of	86 
information	 capture.	With	 the	 deployment	 of	 deep	 neural	 networks	 in	 recent	 years,	UAVs	 have	 taken	87 
over	aerial	sensing	research	in	the	urban,	environmental,	and	agricultural	sectors	(see	Nepal	and	Eslamiat	88 
2022).		89 

Deep	 Learning	 is	 a	 subset	 of	 Machine	 Learning	 that	 uses	 many	 layers	 to	 extract	 data	 features.	 Its	90 
application	has	been	used	 in	a	wide	range	of	 industries,	 from	creating	autonomous	UAV	trajectories	to	91 
now	making	 significant	 strides	 in	accurate	object	 classification.	Their	methods	provide	 real-time	object	92 
detection,	which	makes	them	appropriate	for	autonomous	robotics	and	UAV	applications	in	archaeology	93 
as	well.	 The	 development	 of	 computer	 vision	 and	 deep	 learning	methods	 has	 also	 been	 aided	 by	 the	94 
usage	of	graphics	processing	units	 (GPUs)	 for	deep	 learning	algorithms	 (Nepal	and	Eslamiat	2022).	This	95 
made	it	possible	for	us	to	incorporate	object	detection	methods	appropriate	for	our	real-time	application	96 
in	archaeology.	97 

In	 this	 study,	we	 tested	 the	utility	 of	 both	UAVs	 (both	DJI	Mavik	 and	DJI	 Phantom	4	Pro)	 and	 ground-98 
based	image	capture	(iPhone	Pro	MAX	and	various	Android	smartphones)	in	our	archaeological	fieldwork.	99 
When	combined	with	increasingly	established	object	detection	capabilities	of	deep	learning	programing,	100 
we	 found	 these	methods	 to	be	both	economical	 and	accessible,	 a	 clear	advantage	 recognized	 in	other	101 
academic	and	 industry	applications	 (see	Nepal	and	Eslamiat	2022).	Although	several	deep	 learning	and	102 
CNN	(Convolutional	Neural	Network)	algorithms	have	been	presented	since	2012,	YOLO	is	a	single	stage	103 
deep	 learning	 system	 that	 detects	 objects	 using	 a	 convolution	 neural	 network.	 Several	 deep	 learning	104 
algorithms	now	available	like	recurrent	neural	networks	(RNN,	see	Mittal	2020),	cannot	detect	an	object	105 
in	a	single	run,	but	YOLO	enables	the	detection	across	a	neural	network	in	forward	propagation,	making	it	106 
appropriate	for	real-time	application.	For	these	reasons	and	because	of	its	accelerated	rate	of	detection,	107 
YOLO	was	the	deep	learning	program	used	for	our	study	(Nepal	and	Eslamiat	2022).		108 

Analytical	Challenges	109 

The	primary	dataset	for	training	the	YOLO	algorithm	consisted	of	imagery	captured	during	2022	fieldwork	110 
(Figure	1	and	2).	Images	ranged	from	pictures	of	individual	pottery	fragments,	pottery	in	a	local	workshop	111 
visited	by	the	survey	team	in	2019,	vessels	fragments	photographed	in	the	lab	during	2015	field	season	112 
(Sharp	2019),	and	images	downloaded	from	the	internet	that	were	representative	of	the	range	of	vessel	113 
forms	and	decorative	styles	on	pottery	observed	in	the	field.	114 
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	116 

Figure	1:	Example	of	field	images	of	pottery	and	other	materials	in	physical	setting	that	comprise	original	117 
training	data.	118 

	119 

Figure	2:	Additional	pottery	fragments	in	association	with	stones	and	twigs.	120 

Downloading	and	installing	programs	to	begin	training	revealed	many	compatibility	issues	amongst	pre-121 
installed	 programs	 on	 our	Windows	 PCs	—	 as	 finding	 out	which	 version	was	 compatible	with	 another	122 
program	 and/or	 our	 own	 computers	 proved	 difficult	 at	 times	 —	 which	 necessitated	 a	 bit	 of	123 
experimentation,	 downloading	 and	 redownloading	 and	 frequent	 program	 updates.	 Equally	 so,	 offline	124 
training	of	the	algorithm	with	installed	programs	was	bulky	and	required	several	steps.	Considering	this	125 
limitation	of	offline	training	on	a	Windows	PC,	we	decided	to	train	YOLOv5	for	pottery	sherd	detection	126 
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using	Google	Colab,	a	partly	free	computing	application	with	a	paid	tier,	that	allows	Python	commands	to	129 
be	implemented	and	stored	in	the	Google	cloud.		130 

Once	 we	 began	 working	 in	 the	 cloud,	 we	 were	 heavily	 reliant	 on	 the	 aid	 of	 Deep	 Learning	 (DL)	 1	131 
computing	 tools,	 which	 included	 AI	 engine,	 makesense.ai,	 to	 label	 our	 datasets	 categorically	 through	132 
bounding-boxes.	 The	 archaeologists	 on	 our	 team	 found	 this	 technique	 to	 be	 easy	 to	 learn	 and	 apply	133 
successfully,	 requiring	 only	 basic	 programming	 skills.	 Conveniently,	 the	 collaboration	 between	 Github	134 
repository	and	Ultralytics	(Jocher	2020)	supplied	a	Google	Colab	forum	prefixed	with	a	YOLOv5	training	135 
notebook2.	This	provided	the	foundational	base	where	our	dataset	(taken	from	2022	fieldwork	imagery)	136 
was	input	into	Colab’s	YOLOv5	training	applications.		137 

Our	first	attempts	at	training	the	algorithm	offline	with	installed	software	were	not	as	easy	as	expected.	138 
For	example,	it	was	essentially	impossible	to	“plug-and-play,”	so	to	speak.	We	also	discovered	that	using	139 
the	lab	imagery	from	2015,	which	had	been	processed	at	a	lower	resolution	and	was	free	of	‘background	140 
noise’,	 did	 not	 work	 as	 well	 as	 (considerably	 more	 complex)	 field	 imagery.	 In	 fact,	 while	 training	 the	141 
algorithm,	Christofis	discovered	that	the	prepared	diagnostic	imagery	and	images	of	whole-vessel	pottery	142 
specimens	downloaded	from	the	web	worked	exactly	0%	of	the	time	(Figure	3).	Although	such	images	are	143 
certainly	 useful	 for	 typological	 identification	 of	 pottery	 and	 other	 artifacts,	 they	 were	 unsuitable	 for	144 
training	the	algorithm	alongside	field-captured	imagery.		145 

Importantly,	YOLOv5	was	never	able	to	identify	any	pottery	sherd	images	taken	in	a	lab	setting	once	we	146 
used	 the	 complex	 images	 captured	 in	 the	 field	 in	 initial	 training	 sessions.	 In	 all	 lab-based	 datasets,	147 
YOLOv5	could	not	detect	the	differences	between	stone	and	sherd.	These	occurrences	continued	through	148 
approximately	50	images	and	three	training	runs,	where	all	sherds	were	incorrectly	detected	as	stones	in	149 
our	 output.	 These	 results	 continued	 to	 come	 back	 just	 as	 inconclusive,	 even	 with	 aid	 provided	 by	150 
comparative	 training	 of	 lab-based	 datasets	 against	 stock	 images	 of	 stones.	 This	means	 that,	 given	 the	151 
current	 capabilities	 of	 YOLOv5,	 the	 algorithm	 cannot	 be	 utilized	 for	 legacy	 assemblages	 if	 training	152 
multiple	datasets	 (like	survey	 imagery)	subsequently	and/or	simultaneously.	We	believe,	however,	 that	153 
laboratory	collections	and	other	prepared	diagnostics	can	be	used	if	trained	separately	from	the	objects	154 
photographed	in	the	field.	We	plan	to	test	this	hypothesis	in	the	future.		155 

                                                        

1 The standardization and training methods discussed could not have been constructed without the 
help of DeepLearning’s tutorial, “YOLOv5 training with custom data” (DeepLearning 2020). 

2 We were thankful to have support from Weights and Biases’ online YOLOv5 tutorial 
(Davies 2022)– a step-by-step guide on how to download and kickstart YOLO’s object 
detection features. 
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	157 

Figure	3:	Results	using	images	processed	in	the	lab	to	train	the	algorithm	after	initial	attempts	at	training	158 
using	field	photos.	159 

After	our	YOLOv5	repository	was	established	and	all	complimentary	programs	downloaded,	we	began	the	160 
process	 of	 setting	 up	 a	 standardized	workspace.	 This	 started	with	 creating	 a	master	 folder	 to	 contain	161 
training	 datasets	 (images)	 and	 their	 allocated	 labels	 —	 a	 compartment	 for	 each	 titled	 “images”	 and	162 
“labels.”	 Inside	 these	 two	 folders,	 two	more	 spaces	were	 created	 to	 separate	 “train”	 and	 “validation”	163 
images	 and/or	 labeling.	 Validation	 datasets	 were	 used	 as	 a	 precautionary	 addition	 to	 the	 training	164 
datasets,	meant	 to	 fine-tune	 and	 evaluate	 detection	 accuracy.	 After	 setting	 up	 our	master	 folder,	 we	165 
imported	 the	 datasets	 from	our	 2022	 fieldwork	 into	 the	 train	 and	 validation	 containers	 of	 the	 images	166 
folder	 (our	 validation	 images	 were	 always	 a	 smaller	 sample	 size	 than	 training).	 We	 tried	 to	 choose	167 
collections	 that	 replicated	 the	 natural	 ‘noise’	 of	 the	 landscape,	 where	 pottery	 sherds	 were	 scattered	168 
along	rocks,	found	on	dirt,	and	in	association	with	sticks	and	leaves.	169 
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With	the	master	folder	uniform,	we	began	the	process	of	bounded-box	labeling	for	both	the	training	and	172 
validation	datasets.	To	do	so,	 the	 images	were	 imported	 into	makesense.ai’s	object	detection	browser.	173 
This	free-to-use	GPLv3	website	was	quite	user-friendly	(if	not	a	tedious	affair),	that	allowed	us	to	upload	174 
photos,	set	up	personalized	labels,	and	transfer	our	new	labels	 into	various	components	of	our	 images.	175 
For	this	study,	we	chose	detection	of	four	classes	—	sherd,	stone,	leaf,	and	stick	—	due	to	the	repetition	176 
of	 appearance	 that	 these	elements	demonstrated	within	our	 images.	As	makesense.ai’s	manual	object	177 
detection	process	would	be	used	to	cross-analyze	YOLOv5’s	own	capabilities	to	detect	parallel	sets,	being	178 
thorough	and	detailed	(while	labeling)	was	crucial	for	a	standardized	accuracy	reading.	After	labeling	all	179 
sherds,	stones,	leaves,	and	sticks	within	each	image	of	each	dataset,	we	exported	all	 labels	into	a	YOLO	180 
compatible	zip	file,	which	was	then	extracted	into	the	designated	label	file.	181 

Following	 the	exportation	of	our	 labels,	our	master	 training	 folder	 (now	consisting	of	 full	 datasets	and	182 
labels)	 was	 ready	 to	 be	 uploaded	 for	 YOLOv5	 training.	 Here,	 we	 transitioned	 to	 the	 next	 part	 of	 our	183 
research	with	the	help	of	Google	Colab.	Google	Colab’s	YOLOv5	workspace3	 is	conveniently	set	up	as	a	184 
functioning	tutorial	–	much	of	the	code	needed	to	train,	 	validate,	and	detect	with	YOLOv5	has	already	185 
been	 provided.	 After	 cloning	 YOLO,	 we	 activated	 the	 first	 line	 of	 code.	 This	 allowed	 us	 access	 to	 all	186 
applications	in	an	individual	Colab	session.	After	cloning	finalized,	we	uploaded	and	unzipped	our	training	187 
data	into	Colab.	Here	we	found	that	YOLOv5’s	pre-existing	classes	have	no	applicability	to	our	own	study.	188 
For	 example,	 before	 re-classification	 images	 of	 pottery	 specimens	 had	 been	 misidentified	 as	 modern	189 
objects	 like	 toilets,	 hammers	 and	books	 (Figure	 4).	 Ergo,	we	 edited	 the	 code	on	 this	 file	 to	match	 the	190 
classes/labels	 that	 we	 had	 created	 and	 implemented	 during	 the	 beginning	 of	 this	 research	 process.	191 
Ensuring	that	our	project-specific	constraints	were	now	recognized	by	YOLOv5’s	algorithm,	we	changed	192 
the	number	of	classes	to	4,	and	the	names	(labels)	to	“stone”,	“sherd”,	“stick”,	and	“leaf”	which	improved	193 
detection	 results	 substantially	 (Figure	 5).	With	 these	 adjustments	 in	 place,	 the	 data	were	 re-imported	194 
back	into	Colab’s	YOLOv5,	where	we	could	finally	test	detection	capabilities	by	advancing	to	“train”	in	our	195 
workspace.	 Activating	 the	 second	 block	 of	 prewritten	 code	 and	 experimenting	 with	 different	 epoch	196 
bounds	we	achieved	the	following	results.		197 

                                                        
3 https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb 
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	203 

Figure	4:	Image	depicting	a	shell	and	pottery	fragment	misidentified	as	a	toilet	and	book.	204 



	205 

Figure	5:	Improved	object	detection	using	smaller	set	of	relevant	classes.	206 

Preliminary	Results	207 
		208 
Precision	and	recall	are	two	commonly	used	evaluation	metrics	in	ML	and	information	retrieval.	Precision	209 
tells	us	how	often	the	model	is	correct	when	it	predicts	a	positive	label.	A	high	precision	score	indicates	210 
that	 the	model	 is	 good	at	 correctly	 identifying	positive	 instances,	while	a	 low	precision	 score	 indicates	211 
that	the	model	is	making	a	lot	of	false	positive	predictions.	212 

Recall	 tells	 us	 how	 often	 the	 model	 correctly	 identifies	 all	 the	 positive	 instances.	 A	 high	 recall	 score	213 
indicates	 that	 the	model	 is	 good	at	 finding	all	 the	positive	 instances,	while	a	 low	 recall	 score	 indicates	214 
that	the	model	is	missing	a	lot	of	positive	instances.	215 

While	we	trained	initially	at	150	epochs,	60	was	identified	as	the	ideal	constraint	for	our	research,	as	 it	216 
allowed	 us	 to	 load	 the	 number	 of	 times	 that	 YOLOv5	 trained	 our	 datasets	 without	 overfitting	 them.	217 
When	YOLOv5	was	 run	 through	other	epoch	modes,	 such	as	 its	default	 setting	3,	and	results	were	still	218 
promising.	219 
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After	training	for	150	epochs,	we	managed	to	obtain	a	precision	score	of	0.28,	which	meant	out	of	100,	221 
only	28	predictions	were	correct.	Even	though	this	was	the	highest	precision	score	out	of	all	our	training	222 
runs,	 this	was	 still	 quite	 low	 for	our	application.	 This	was	due	 to	 the	 limited	number	of	examples	 that	223 
were	available,	as	we	only	used	56	 images	 for	 training	this	model	 (on	this	specific	 run).	On	the	second	224 
run,	we	obtained	a	0.23	recall	score–	still	low	for	our	application.	Although	both	of	these	outputs	exhibit	225 
low	precision	and	recall,	it	is	possible	to	make	significant	improve	detection	when	new	data	are	added.	A	226 
precision	score	of	0.28	and	a	recall	score	of	0.23	supports	that	YOLOv5	is	able	to	correctly	detect	sherds	227 
against	 the	 complexities	 upon	 the	 natural	 landscape	 (as	 seen	 in	 our	 collation	 of	 stones,	 leaves,	 and	228 
sticks).		229 

Average	Precision	(AP)	is	a	performance	metric	that	measures	how	well	a	model	can	detect	and	localize	230 
objects	in	an	image.	When	analyzing	results,	mAP	simply	refers	to	the	mean	of	Average	Precision.	231 

We	achieved	a	mAP	value	of	0.19,	which	meant	 that	 the	average	precision	across	all	 the	classes	 in	 the	232 
dataset	 was	 0.19.	 In	 other	 words,	 the	model's	 performance	 in	 detecting	 and	 localizing	 objects	 in	 the	233 
images	 was	 not	 ideal	 (The	 mAP	 score	 ranges	 from	 0	 to	 1,	 where	 a	 score	 of	 1	 indicates	 perfect	234 
performance,	and	a	score	of	0	indicates	that	the	model	is	not	able	to	detect	any	objects	correctly).	A	mAP	235 
score	of	0.19	is	again	quite	low,	and	it	suggests	that	the	YOLOv5	model	needs	to	be	improved	in	order	to	236 
achieve	 better	 performance.	 It	 is	 important	 to	 note,	 however,	 that	 the	 interpretation	 of	 a	mAP	 value	237 
depends	on	the	dataset	and	the	specific	task	being	evaluated.	Thus,	a	score	of	0.19	may	be	considered	238 
‘good’	or	 ‘bad’	depending	on	 the	difficulty	of	 the	 task.	 In	other	words,	 archaeological	object	detection	239 
may	be	more	difficult	than	other	utilities,	and	therefore,	what	is	considered	a	‘good’	mAP	value	may	be	240 
lower	than	in	other	applications.	241 

A	 common	 way	 to	 monitor	 a	 model's	 performance	 during	 a	 training	 session	 is	 by	 plotting	 mAP	 as	 a	242 
function	 of	 the	 number	 of	 iterations.	 This	 graph	 below	 provides	 information	 of	 the	 YOLOv5	 model’s	243 
performance	 during	 our	 training	 process.	 This	 gives	 us	 guidance	 on	 how	well	 the	model	 is	 fitting	 the	244 
training	data.	During	the	initial	stage	of	the	training,	mAP	increases	rapidly,	and	then	slows	down	as	the	245 
number	of	iterations	increases.	After	some	time,	it	remains	constant.	As	we	can	see	in	the	chart	below,	246 
the	model	is	constant	after	60	iterations,	which	means	that	the	model	begins	to	overfit	the	data.	247 

	248 

	 	249 

Figure	6:	Graphical	illustration	of	results	after	150	iterations.	250 
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With	 the	 semi-successful	 training	 of	 the	 algorithm,	 we	 hope	 to	 standardize	 YOLOv5’s	 object-based	255 
methodology	and	expand	it	to	our	low	altitude	drone-based	survey	data.	How	does	Google	Colab	fit	into	256 
this	picture?	Certainly,	 it	provided	us	with	a	 convenient	 tool	when	software	downloads	and	versioning	257 
presented	critical	problems.	A	critical	question	that	emerges,	however,	is	whether	it	is	necessary	to	work	258 
independent	 of	 the	 online	 system.	 In	 particular,	 we	 look	 towards	 the	 limitations	 of	 Google	 Colab:	 its	259 
potential	for	data	loss	and	even	its	potential	untimely	discontinuation	in	the	future	(as	has	been	the	case	260 
with	other	Google	products	 like	Google	Poly).	 These	challenges	notwithstanding,	 the	ability	 to	conduct	261 
high-resolution	 classification	of	 objects	 on	 the	 ground	without	 collecting	 them	or	 using	 expensive	GPS	262 
units	are	some	of	the	key	advantages	of	using	YOLOv5	technique.	263 

With	the	training	of	the	YOLO	object	detection	algorithm	on	material	culture	collected	on	the	ground	and	264 
with	UAVs	 (see	Orengo	et	al.	2021),	we	have	entered	a	new	era	of	digital	archaeology.	This	affordable	265 
approach	produces	high-resolution	spatial	data	as	well	as	material	culture	records	that	are	informative,	266 
experiential,	immersive,	and	easily	accessible	(i.e.	limited	post-processing)	and	permit	us	to	leave	objects	267 
in	situ	without	destroying	site	components.	Among	others,	the	ability	to	weed	out	non-essential	data	and	268 
focus	on	the	essential,	visually	navigate	and	detect	objects	and	features	non-destructively	are	proving	to	269 
be	key	advantages	(see	also	Mittal	2020).	While	fundamentally	successful	at	detecting	pottery	sherds	on	270 
the	 ground,	 the	 ability	 to	 transfer	 data	 into	 our	GIS	 for	 spatial	 analysis	 (based	on	 accurately	 classified	271 
images	captured	with	location	enabled	smartphones	and	machine	learning	with	YOLOv5)	has	the	capacity	272 
to	transform	traditional	time-consuming	survey,	object	recording,	and	collection.	273 

For	 archaeologists,	 a	 critical	 advantage	 of	 incorporating	 object-based	 machine	 learning	 techniques	 is	274 
never	 having	 to	 pick	 up	 an	 artifact	 while	 at	 the	 same	 time	 being	 able	 to	 identify	 it	 stylistically,	275 
quantitatively,	and	locationally.	Applying	such	methods	contributes	to	the	speed	and	accuracy	with	which	276 
new	survey	data	 can	be	captured.	Through	high-resolution	 in	 situ	 recording,	using	 images	 captured	on	277 
the	 ground	 or	 remotely	 using	 UAVs,	 the	 preservation	 of	 fragile	 and	 at-risk	 archaeological	 sites	 is	278 
significantly	improved.	Furthermore,	through	the	advancement	of	non-destructive	techniques,	we	gain	a	279 
high-resolution	view	of	 the	 landscape	and	 surrounding	environment	while	actively	working	 towards	 its	280 
conservation.	281 

In	 this	 experiment,	 YOLOv5	 has	 exhibited	 potential	 for	 consistent	 detection	 of	 archaeological	282 
phenomena,	although	statistically	marginal.	In	this	case,	it	was	successful	at	detecting	and	classifying	the	283 
presence	of	pottery	sherds	when	used	with	images	captured	on	the	ground	rather	than	the	UAV	imagery.	284 
Presently,	 images	 captured	using	our	UAV	camera	were	 too	vague	 to	produce	 the	necessary	detail	 for	285 
distinguishing	pottery	from	rocks.	During	the	next	step	of	this	project,	we	plan	to	re-capture	drone	data	286 
at	 lower	 altitudes	 (approximately	 15-20	 meters)	 and	 use	 higher-resolution	 cameras	 to	 test	 our	287 
methodology.	288 

We	also	believe	 that,	given	more	 time	 to	enlarge	 the	dataset	and	 retrain	 the	model,	we	support	 ideas	289 
that	implementing	programs	like	YOLOv5	into	UAV	surveys	could	considerably	supplement	the	way	that	290 
today’s	 digital	 archaeological	 fieldwork	 and	 surveying	 is	 done.	 UAV-captured	 surveying	 and	 diagnostic	291 
evaluation	with	machine	learning	tools	will	save	time,	money	and	resources,	while	allocating	more	space	292 
to	actively	research,	excavate,	and	connect	with	communities.	The	immense	amount	of	data	provided	by	293 
AI-commanded	 drones	 as	 well	 as	 its	 “no-touch”	 approach	 also	 leaves	 opportunities	 for	 a	 better	 (and	294 
more	ethical)	digital	 recording	of	both	archaeological	 and	contemporary	phenomena;	 thus,	 assisting	 in	295 
the	current	revolution	to	advance	a	more	decolonized	archaeology	and	emphasize	preservation.	296 

Yet	with	our	new-found	ability	to	partially	detect,	analyze,	interpret	and	share,	we	find	ourselves	ever	at	297 
the	cross-roads	of	experimentation,	trial,	and	error.	Although	creative	and	thought	provoking,	we	aim	for	298 
standardized	methodologies	 to	 lend	 credibility,	 longevity,	 and	 repeatability	 to	 our	 approach.	With	 this	299 
paper	and	our	shared	insights,	it	is	our	aim	to	contribute	to	the	dialogue	on	combining	such	approaches,	300 
helping	 to	 further	 integrate	 this	 advancing	 technique	 into	 our	 trans-disciplinary	 community	 of	301 
computational	archaeology	practitioners.	302 
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