RUIZ-REDONDO Aitor's profile
avatar

RUIZ-REDONDO Aitor

  • Centre for the Archaeology of Human Origins (CAHO), University of Southampton, Southampton, United Kingdom
  • Dating, Europe, Rock art, Symbolic behaviours, Upper Palaeolithic
  • recommender, manager

Recommendation:  1

Reviews:  0

Recommendation:  1

17 Jun 2022
article picture

Light in the Cave: Opal coating detection by UV-light illumination and fluorescence in a rock art context. Methodological development and application in Points Cave (Gard, France)

New method for the in situ detection and characterisation of amorphous silica in rock art contexts

Recommended by based on reviews by Alain Queffelec, Laure Dayet and 1 anonymous reviewer

Silica coating developed in cave art walls had an impact in the preservation of the paintings themselves. Despite it still exists a controversy about whether or not the effects contribute to the preservation of the artworks; it is evident that identifying these silica coatings would have an impact to assess the taphonomy of the walls and the paintings preserved on them. Unfortunately, current techniques -especially non-invasive ones- can hardly address amorphous silica characterisation. Thus, its presence is often detected on laboratory observations such as SEM or XRD analyses. In the paper “Light in the Cave: Opal coating detection by UV-light illumination and fluorescence in a rock art context - Methodological development and application in Points Cave (Gard, France)”, Quiers and collaborators propose a new method for the in situ detection and characterisation of amorphous silica in a rock art context based on UV laser-induced fluorescence (LIF) and UV illumination [1].

The results from both methods presented by the authors are convincing for the detection of U-silica mineralisation (U-opal in the specific case of study presented). This would allow access to a fast and cheap method to identify this kind of formations in situ in decorated caves. Beyond the relationship between opal coating and the preservation of the rock art, the detection of silica mineralisation can have further implications. First, it can help to define spot for sampling for pigment compositions, as well as reconstruct the chronology of the natural history of the caves and its relation with the human frequentation and activities. In conclusion, I am glad to recommend this original research, which offers a new approach to the identification of geological processes that affect -and can be linked with- the Palaeolithic cave art.

[1] Quiers, M., Chanteraud, C., Maris-Froelich, A., Chalmin-Aljanabi, E., Jaillet, S., Noûs, C., Pairis, S., Perrette, Y., Salomon, H., Monney, J. (2022) Light in the Cave: Opal coating detection by UV-light illumination and fluorescence in a rock art context. Methodological development and application in Points Cave (Gard, France). HAL, hal-03383193, ver. 5 peer-reviewed and recommended by Peer community in Archaeology. https://hal.archives-ouvertes.fr/hal-03383193v5

avatar

RUIZ-REDONDO Aitor

  • Centre for the Archaeology of Human Origins (CAHO), University of Southampton, Southampton, United Kingdom
  • Dating, Europe, Rock art, Symbolic behaviours, Upper Palaeolithic
  • recommender, manager

Recommendation:  1

Reviews:  0