Submit a preprint

Latest recommendations

IdTitle * Authors * Abstract * Picture * Thematic fields * RecommenderReviewersSubmission date
26 Mar 2024
article picture

Inferring shellfishing seasonality from the isotopic composition of biogenic carbonate: A Bayesian approach

Mixture models and seasonal mobility

Recommended by and based on reviews by Iza Romanowska and 1 anonymous reviewer

The paper by Brown & Lewis [1] presents an approach to measure seasonal mobility and subsistence practices. In order to do so, the paper proposes a Bayesian mixture model to estimate the annual distribution of shellfish harvesting activity. Following the recommendations of the two reviewers, the paper presents a clear and innovative method to assess seasonal mobility for prehistoric groups, although it could benefit from additional references regarding isotopic literature.

While the adequacy of isotope analysis for estimating mobility patterns in Archaeology has been extensively proven by now, work on specific seasonal mobility is not that much abundant. However, this is a key issue, since seasonal mobility is one of the main social components defining the differences between groups both considering farming vs hunting and gathering or even among hunter-gatherer groups themselves. In this regard, the paper brings a valuable methodological resources that can be used for further research in this issue.

One of its greatest values is the fact that it can quantify the uncertainty present in previous isotope studies in seasonal mobility. As stated by the authors, the model can still undergo several optimisation aspects, but as it stands, it is already providing a valuable asset regarding the quantification of uncertainy in the isotopic studies of seasonal mobility.

Reference

[1] Brown, J. and Lewis, G. (2024). Inferring shellfishing seasonality from the isotopic composition of biogenic carbonate: A Bayesian approach. Zenodo, 7949547, ver. 3 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.5281/zenodo.7949547

Inferring shellfishing seasonality from the isotopic composition of biogenic carbonate: A Bayesian approachJordan Brown and Gabriel Lewis<p>The problem of accurately and reliably estimating the annual distribution of seasonally-varying human settlement and subsistence practices is a classic concern among archaeologists, which has only become more relevant with the increasing import...Archaeometry, Computational archaeology, Environmental archaeology, North America, Palaeontology, Paleoenvironment, ZooarchaeologyAlfredo Cortell-Nicolau Iza Romanowska, Eduardo Herrera Malatesta, Alejandro Sierra Sainz-Aja, Sam Leggett, Christianne Fernee, Anonymous, Asier García-Escárzaga , Paul Szpak , Maria Elena Castiello , Jasmine Lundy , Tansy Branscombe 2023-10-03 04:45:54 View
20 Jun 2020
article picture

Investigating relationships between technological variability and ecology in the Middle Gravettian (ca. 32-28 ka cal. BP) in France.

Understanding Palaeolithic adaptations through niche modelling - the case of the French Middle Gravettian

Recommended by based on reviews by Andreas Maier and Joao Marreiros

The paper entitled “Investigating relationships between technological variability and ecology in the Middle Gravettian (ca. 32-28 ky cal. BP) in France” [1] submitted by A. Vignoles and colleagues offers a robust and interesting new analysis of the niche differences between the Rayssian and Noaillian facies of the Middle Gravettian in France.

Understanding technological variability in the Palaeolithic is a long-standing challenge. Previous debates have vacillated between strong, quasi-ethnic culture-historical interpretations rooted in the traditional European school and extreme functional stances that would see artefact forms and their frequencies with assemblages conditioned by site function. While both positions have their merits, many empirical and conceptual caveats haunt them equally [see 2]. In this new study Vignoles and colleagues, so-called eco-cultural niche modelling is applied in an attempt to explore whether, and if so, which environmental background factors may have conditioned the emergence and persistence of two sub-cultural categories (facies) within the Middle Gravettian: the Rayssian and the Noaillian. These are are defined through, respectively, a specific knapping method and the presence of a specific burin type, and the occurrence of these seems divided by the Garonne River. Eco-cultural niche modelling has emerged as an archaeological application of distribution models widely employed in ecology, including palaeoecology, to understand organismal niche envelopes [3]. They constitute powerful tools for using the spatial and chronological information inherent in the archaeological record to up-scale interpretations of human-environment relations beyond individual site stratigraphies or dating series. Another important feature of such models is that their performance can, as Vignoles et al. also show, be formally evaluated and replicated. Following on from earlier applications of such techniques [e.g. 4], the authors here present an interesting study that uses very specific archaeological indicators – namely the Raysse method and the Noaillian burin – as defining features for the units (communities, traditions) whose adaptations they investigate. While broad tool types have previously been used as cultural taxonomic indicators in niche modelling studies [5], the present study is ambitious in its attempt to understand variability at a relatively small spatial scale. This mirrors equally interesting attempts of doing so in later prehistoric contexts [6].

Applications of niche modelling that use analytical units defined through archaeological characteristics (technology, typology) are opening up exciting new opportunities for pinning down precisely which environmental or climatic features these cultural components reference, if any. The study by Vignoles et al. makes a good case. At the same time, this approach also acutely raises questions of cultural taxonomy, of how we define our units of analysis and what they might mean [7]. It remains unclear to whether we can define such units on the basis of very different technological traits if the aim is to then use them as taxonomically equivalent in subsequent analyses. There is also a risk that these facies become reified as traditions of sub-cultures – then often further equated with specific people – through an overly normative view of their constituent technological elements. In addition, studies of adaptation in principle need to be conscious of the so-called ‘Galton’s Problem’, where the historical relatedness of the analytical units in question need to be taken into account in seeking salient correlations between cultural and environmental features [8]. In pushing forward eco-cultural niche modelling, the study by Vignoles et al. thus takes us some way forward in understanding the potentially adaptive variability within the Gravettian; future work should consider more strongly the specific historical relatedness amongst the cultural taxa under study and follow more theory-driven definition thereof. Such definition would also allow the post-analysis interpretations of eco-cultural niche modelling to be more explicit. Without doubt, the Gravettian as a whole – including, for instance, phenomena such as the Maisierian [9] – would benefit from additional and extended applications of this method. Similarly, other periods of the Palaeolithic also characterized by such variability (e.g. the Magdalenian and Final Palaeolithic) offer additional cases moving forward.

Bibliography

[1] Vignoles, A. et al. (2020). Investigating relationships between technological variability and ecology in 1 the Middle Gravettian (ca. 32-28 ky cal. BP) in France. PCI Archaeology. 10.31219/osf.io/ud3hj

[2] Dibble, H.L., Holdaway, S.J., Lin, S.C., Braun, D.R., Douglass, M.J., Iovita, R., McPherron, S.P., Olszewski, D.I., Sandgathe, D., 2017. Major Fallacies Surrounding Stone Artifacts and Assemblages. Journal of Archaeological Method and Theory 24, 813–851. 10.1007/s10816-016-9297-8

[3] Svenning, J.-C., Fløjgaard, C., Marske, K.A., Nógues-Bravo, D., Normand, S., 2011. Applications of species distribution modeling to paleobiology. Quaternary Science Reviews 30, 2930–2947. 10.1016/j.quascirev.2011.06.012

[4] Banks, W.E., d’Errico, F., Dibble, H.L., Krishtalka, L., West, D., Olszewski, D.I., Townsend Petersen, A., Anderson, D.G., Gillam, J.C., Montet-White, A., Crucifix, M., Marean, C.W., Sánchez-Goñi, M.F., Wolfarth, B., Vanhaeren, M., 2006. Eco-Cultural Niche Modeling: New Tools for Reconstructing the Geography and Ecology of Past Human Populations. PaleoAnthropology 2006, 68–83.

[5] Banks, W.E., Zilhão, J., d’Errico, F., Kageyama, M., Sima, A., Ronchitelli, A., 2009. Investigating links between ecology and bifacial tool types in Western Europe during the Last Glacial Maximum. Journal of Archaeological Science 36, 2853–2867. 10.1016/j.jas.2009.09.014

[6] Whitford, B.R., 2019. Characterizing the cultural evolutionary process from eco-cultural niche models: niche construction during the Neolithic of the Struma River Valley (c. 6200–4900 BC). Archaeological and Anthropological Sciences 11, 2181–2200. 10.1007/s12520-018-0667-x

[7] Reynolds, N., Riede, F., 2019. House of cards: cultural taxonomy and the study of the European Upper Palaeolithic. Antiquity 93, 1350–1358. 10.15184/aqy.2019.49

[8] Mace, R., Pagel, M.D., 1994. The Comparative Method in Anthropology. Current Anthropology 35, 549–564. 10.1086/204317

[9] Pesesse, D., 2017. Is it still appropriate to talk about the Gravettian? Data from lithic industries in Western Europe. Quartär 64, 107–128. 10.7485/QU64_5

Investigating relationships between technological variability and ecology in the Middle Gravettian (ca. 32-28 ka cal. BP) in France.Anaïs Vignoles, William E. Banks, Laurent Klaric, Masa Kageyama, Marlon E. Cobos, Daniel Romero-Alvarez<p>The French Middle Gravettian represents an interesting case study for attempting to identify mechanisms behind the typo-technological variability observed in the archaeological record. Associated with the relatively cold and dry environments of...Europe, Lithic technology, Paleoenvironment, Peopling, Upper PalaeolithicFelix Riede2020-03-23 12:16:20 View
28 Aug 2024
article picture

IT- and machine learning-based methods of classification: The cooperative project ClaReNet – Classification and Representation for Networks

Humans, machines, and the classification of Celtic coinage – the ClaReNet project

Recommended by , ORCID_LOGO and ORCID_LOGO based on reviews by Alex Brandsen and Eythan Levy

The paper entitled “IT- and machine learning-based methods of classification: The cooperative project ClaReNet – Classification and Representation for Networks” submitted by Chrisowalandis Deligio and colleagues presents the joint efforts of numismatists and data scientists in classifying a large corpus of Celtic coinage. Under the project banner “ClaReNet – Classification and Representation for Networks”, they seek to explore the possibilities and also the limits of new computational methods for classification and representation. This approach seeks to rigorously keep humans in the loop in that insights from Science and Technology Studies inform the way in which knowledge generation is monitored as part of this project. The paper was first developed for a special conference session convened at the EAA annual meeting in 2021 and is intended for an edited volume on the topic of typology, taxonomy, classification theory, and computational approaches in archaeology.

Deligio et al. (2024) begin with a brief and pertinent research-historical outline of Celtic coin studies with a specific focus on issues of classification. They raise interesting points about how variable degrees of standardisation in manufacture – industrial versus craft production, for instance – impact our ability to derive tidy typologies. The successes and failures of particular classificatory procedures and protocols can therefore help inform on the technological contexts of various object worlds and the particularities of human practices linked to their creation. These insights and discussion are eminently case-transferrable and applies not only to coinage, which after all is rather standardised, but to practically all material culture not made by machines – a point that gels particularly well with the contribution by Lucas (2022) to be published in the same volume. Although Deligio et al. do not flag this up specifically, the very expectation that archaeological finds should neatly fall into typological categories likely related to the objects that were initially used by pioneers of the method such as Montelius (1903) to elaborate its basic principles: these were metal objects often produced in moulds and very likely by only a very small number of highly-trained craftspeople such that the production of these objects approached the standardisation seen in industrial times (Nørgaard 2018) – see also Riede’s (2023) contribution due to be published in the same volume.

At the core of Deligio and colleagues’ contribution is the exploration of machine-aided classification that should, via automation, assist in handling the often large numbers of coins available in collections and, at times, from single sites or hoards. Specifically, the authors discuss the treatment of the remarkable coin hoard from Le Câtillon II on Jersey consisting of approximately 70,000 individual Celtic coins. They proceeded to employ several advanced supervised and unsupervised classification methods to process this stupendously large number of objects. Their contribution does not stop there, however, but also seeks to articulate the discussion of machine-aided classification with more theoretically informed perspectives on knowledge production. In line with similar approaches developed in-house at the Römisch-Germanische Kommission (Hofmann 2018; Hofmann et al. 2019; Auth et al. 2023), the authors also report on their cutely acronymed PANDA (Path Dependencies, Actor-Network and Digital Agency) methodology, which they deploy to reflect on the various actors and actants – humans, software, and hardware – that come together in the creation of this new body of knowledge. This latter impetus of the paper thus lifts the lid on the many intricate, idiosyncratic, and often quirky decisions and processes that characterise research in general and research that brings together humans and machines in particular – a concrete example of the messiness of knowledge production that commonly remains hidden behind the face of the published book or paper but which science studies have long pointed at as vital components of the scientific process itself (Latour and Woolgar 1979; Galison 1997; Shapin and Schaffer 2011). In this manner, the present contribution serves as inspiration to the many similar projects that are emerging right now in demonstrating just how vital a due integration of theory, epistemology, and method is as scholars are forging their path into a future where few if any archaeological projects do not include some element of machine-assistance. 

References

Auth, Frederic, Katja Rösler, Wenke Domscheit, and Kerstin P. Hofmann. 2023. “From Paper to Byte: A Workshop Report on the Digital Transformation of Two Thing Editions.” Zenodo. https://doi.org/10.5281/zenodo.8214563

Deligio, Chrisowalandis, Caroline von Nicolai, Markus Möller, Katja Rösler, Julia Tietz, Robin Krause, Kerstin P. Hofmann, Karsten Tolle, and David Wigg-Wolf. 2024. “IT- and Machine Learning-Based Methods of Classification: The Cooperative Project ClaReNet – Classification and Representation for Networks.” Zenodo, ver.5 peer-reviewed and recommended by PCI Archaeology  https://doi.org/10.5281/zenodo.7341342

Galison, Peter Louis. 1997. Image and Logic: A Material Culture of Microphysics. Chicago, IL: University of Chicago Press.

Hofmann, Kerstin P. 2018. “Dingidentitäten Und Objekttransformationen. Einige Überlegungen Zur Edition von Archäologischen Funden.” In Objektepistemologien. Zum Verhältnis von Dingen Und Wissen, edited by Markus Hilgert, Kerstin P. Hofmann, and Henrike Simon, 179–215. Berlin Studies of the Ancient World 59. Berlin: Edition Topoi. https://dx.doi.org/10.17171/3-59

Hofmann, Kerstin P., Susanne Grunwald, Franziska Lang, Ulrike Peter, Katja Rösler, Louise Rokohl, Stefan Schreiber, Karsten Tolle, and David Wigg-Wolf. 2019. “Ding-Editionen. Vom Archäologischen (Be-)Fund Übers Corpus Ins Netz.” E-Forschungsberichte des DAI 2019/2. E-Forschungsberichte Des DAI. Berlin: Deutsches Archäologisches Institut. https://publications.dainst.org/journals/efb/2236/6674

Latour, Bruno, and Steve Woolgar. 1979. Laboratory Life: The Social Construction of Scientific Facts. Laboratory Life : The Social Construction of Scientific Facts. Beverly Hills, CA: Sage.

Lucas, Gavin. 2022. “Archaeology, Typology and Machine Epistemology.” Zenodo. https://doi.org/10.5281/zenodo.7622162

Montelius, Gustaf Oscar Augustin. 1903. Die Typologische Methode. Stockholm: Almqvist and Wicksell.

Nørgaard, Heide Wrobel. 2018. Bronze Age Metalwork: Techniques and Traditions in the Nordic Bronze Age 1500-1100 BC. Oxford: Archaeopress Archaeology.

Riede, Felix. 2023. “The Role of Heritage Databases in Typological Reification: A Case Study from the Final Palaeolithic of Southern Scandinavia.” Zenodo. https://doi.org/10.5281/zenodo.8372671

Shapin, Steven, and Simon Schaffer. 2011. Leviathan and the Air-Pump: Hobbes, Boyle, and the Experimental Life. Princeton: Princeton University Press.

IT- and machine learning-based methods of classification: The cooperative project ClaReNet – Classification and Representation for NetworksChrisowalandis Deligio, Caroline von Nicolai, Markus Möller, Katja Rösler, Julia Tietz, Robin Krause, Kerstin P. Hofmann, Karsten Tolle, David Wigg-Wolf<p>The classification of archaeological finds and their representation are shaped by various object epistemological approaches and changes of medium. With ever increasing digitisation, there are now new possibilities of classification, for example...Antiquity, Computational archaeology, Europe, Theoretical archaeologyFelix Riede2022-12-07 10:43:59 View
04 Oct 2023
article picture

IUENNA – openIng the soUthErn jauNtal as a micro-regioN for future Archaeology: A "para-description"

The IUENNA project: integrating old data and documentation for future archaeology

Recommended by ORCID_LOGO based on reviews by Nina Richards and 3 anonymous reviewers

This recommended paper on the IUENNA project (Hagmann and Reiner 2023) is not a paper in the traditional sense, but it is a reworked version of a project proposal. It is refreshing to read about a project that has just started and see what the aims of the project are. This ties in with several open science ideas and standards (e.g. Brinkman et al. 2023). I am looking forward to see in a few years how the authors managed to reach the aims and goals of the project.

The IUENNA project deals with the legacy data and old excavations on the Hemmaberg and in the Jauntal. Archaeological research in this small, but important region, has taken place for more than a century, revealing material from over 2000 years of human history. The Hemmaberg is well known for its late antique and early medieval structures, such as roads, villas and the various churches. The wider Jauntal reveals archaeological finds and features dating from the Iron Age to the recent past. The authors of the paper show the need to make sure that the documentation and data of these past archaeological studies and projects will be accessible in the future, or in their own words: "Acute action is needed to systematically transition these datasets from physical filing cabinets to a sustainable, networked virtual environment for long-term use" (Hagmann and Reiner 2023: 5).

The papers clearly shows how this initiative fits within larger developments in both Digital Archaeology and the Digital Humanities. In addition, the project is well grounded within Austrian archaeology. While the project ties in with various international standards and initiatives, such as Ariadne (https://ariadne-infrastructure.eu/) and FAIR-data standards (Wilkinson et al. 2016, 2019), it would benefit from the long experience institutes as the ADS (https://archaeologydataservice.ac.uk/) and DANS (see Data Station Archaeology: https://dans.knaw.nl/en/data-stations/archaeology/) have on the storage of archaeological data. I would also like to suggest to have a look at the Dutch SIKB0102 standard (https://www.sikb.nl/datastandaarden/richtlijnen/sikb0102) for the exchange of archaeological data. The documentation is all in Dutch, but we wrote an English paper a few years back that explains the various concepts (Boasson and Visser 2017). However, these are a minor details or improvements compared to what the authors show in their project proposal. The integration of many standards in the project and the use of open software in a well-defined process is recommendable.

The IUENNA project is an ambitious project, which will hopefully lead to better insights, guidelines and workflows on dealing with legacy data or documentation. These lessons will hopefully benefit archaeology as a discipline. This is important, because various (European) countries are dealing with similar problem, since many excavations of the past have never been properly published, digitalized or deposited. In the Netherlands, for example, various projects dealt with publication of legacy excavations in the Odyssee-project (https://www.nwo.nl/onderzoeksprogrammas/odyssee). This has led to the publication of various books and datasets (24) (https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:34359), but there are still many datasets (8) missing from the various projects. In addition, each project followed their own standards in creating digital data, while IUENNA will make an effort to standardize this. There are still more than 1000 Dutch legacy excavations still waiting to be published and made into a modern dataset (Kleijne 2010) and this is probably the case in many other countries. I sincerely hope that a successful end of IUENNA will be an inspiration for other regions and countries for future safekeeping of legacy data.

References

Boasson, W and Visser, RM. 2017 SIKB0102: Synchronizing Excavation Data for Preservation and Re-Use. Studies in Digital Heritage 1(2): 206–224. https://doi.org/10.14434/sdh.v1i2.23262

Brinkman, L, Dijk, E, Jonge, H de, Loorbach, N and Rutten, D. 2023 Open Science: A Practical Guide for Early-Career Researchers https://doi.org/10.5281/zenodo.7716153

Hagmann, D and Reiner, F. 2023 IUENNA – openIng the soUthErn jauNtal as a micro-regioN for future Archaeology: A ‘para-description’. https://doi.org/10.31219/osf.io/5vwg8

Kleijne, JP. 2010. Odysee in de breedte. Verslag van het NWO Odyssee programma, kortlopend onderzoek: ‘Odyssee, een oplossing in de breedte: de 1000 onuitgewerkte sites, die tot een substantiële kennisvermeerdering kunnen leiden, digitaal beschikbaar!’ ‐ ODYK‐09‐13. Den Haag: E‐depot Nederlandse Archeologie (EDNA). https://doi.org/10.17026/dans-z25-g4jw

Wilkinson, MD, Dumontier, M, Aalbersberg, IjJ, Appleton, G, Axton, M, Baak, A, Blomberg, N, Boiten, J-W, da Silva Santos, LB, Bourne, PE, Bouwman, J, Brookes, AJ, Clark, T, Crosas, M, Dillo, I, Dumon, O, Edmunds, S, Evelo, CT, Finkers, R, Gonzalez-Beltran, A, Gray, AJG, Groth, P, Goble, C, Grethe, JS, Heringa, J, ’t Hoen, PAC, Hooft, R, Kuhn, T, Kok, R, Kok, J, Lusher, SJ, Martone, ME, Mons, A, Packer, AL, Persson, B, Rocca-Serra, P, Roos, M, van Schaik, R, Sansone, S-A, Schultes, E, Sengstag, T, Slater, T, Strawn, G, Swertz, MA, Thompson, M, van der Lei, J, van Mulligen, E, Velterop, J, Waagmeester, A, Wittenburg, P, Wolstencroft, K, Zhao, J and Mons, B. 2016 The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3(1): 160018. https://doi.org/10.1038/sdata.2016.18

Wilkinson, MD, Dumontier, M, Jan Aalbersberg, I, Appleton, G, Axton, M, Baak, A, Blomberg, N, Boiten, J-W, da Silva Santos, LB, Bourne, PE, Bouwman, J, Brookes, AJ, Clark, T, Crosas, M, Dillo, I, Dumon, O, Edmunds, S, Evelo, CT, Finkers, R, Gonzalez-Beltran, A, Gray, AJG, Groth, P, Goble, C, Grethe, JS, Heringa, J, Hoen, PAC ’t, Hooft, R, Kuhn, T, Kok, R, Kok, J, Lusher, SJ, Martone, ME, Mons, A, Packer, AL, Persson, B, Rocca-Serra, P, Roos, M, van Schaik, R, Sansone, S-A, Schultes, E, Sengstag, T, Slater, T, Strawn, G, Swertz, MA, Thompson, M, van der Lei, J, van Mulligen, E, Jan Velterop, Waagmeester, A, Wittenburg, P, Wolstencroft, K, Zhao, J and Mons, B. 2019 Addendum: The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 6(1): 6. https://doi.org/10.1038/s41597-019-0009-6

 

IUENNA – openIng the soUthErn jauNtal as a micro-regioN for future Archaeology: A "para-description"Hagmann, Dominik; Reiner, Franziska<p>The Go!Digital 3.0 project IUENNA – an acronym for “openIng the soUthErn jauNtal as a micro-regioN for future Archaeology” – embraces a comprehensive open science methodology. It focuses on the archaeological micro-region of the Jauntal Valley ...Antiquity, Classic, Computational archaeologyRonald Visser2023-04-06 13:36:16 View
09 Dec 2024
article picture

Latest updates on the study of the Middle Palaeolithic Lithic assemblages of Cardina- Salto do Boi site (Côa Valley, Portugal)

Fresh insights into the Middle Paleolithic of the Côa Valley (Portugal) and the importance of quartz

Recommended by ORCID_LOGO based on reviews by Marta Arzarello, Davide Delpiano and 1 anonymous reviewer

The Middle Palaeolithic period represents a crucial phase in the Prehistory of Europe, marked by the dominance of Neanderthal populations and their adaptive strategies. In Portugal, this period is characterized by a wealth of archaeological sites that provide valuable insights into the lifeways, technology, and environmental adaptations of its inhabitants (Aubry et al., 2011; J. L. Cardoso & Cascalheira, 2024; Cascalheira et al., 2022; Zilhão, 2001; Zilhão et al., 2021). One of the most significant is Gruta da Figueira Brava, located near the modern coastline: recent research has highlighted its role as a key site for understanding coastal adaptation by Neanderthals (Zilhão et al., 2020). Almonda Cave System is another pivotal area (Marks et al., 2001; Marks et al., 1994), offering a long stratigraphic sequence that includes Middle Palaeolithic layers . A prominent site is also and Foz do Enxarrique (Cunha et al., 2019), rich in lithic artifacts indicating a reliance on local hunting and foraging . The lithic technology of the Middle Palaeolithic in Portugal is largely characterized by the widespread use of the Levallois method, with variations reflecting local adaptations and raw material availability. Quartz, quartzite and flint were commonly used, indicating a strategic selection of materials based on functionality and proximity.

The Côa Valley, located in northern Portugal, is renowned for its rich archaeological record spanning from the Middle Palaeolithic to the Upper Palaeolithic (Aubry et al., 2012, 2016). The region’s significance lies not only in its rock art but also in its evidence of human occupation and technological development during the Pleistocene. Middle Palaeolithic sites in the Côa Valley are characterized by lithic assemblages associated with Neanderthal populations. These sites reveal a predominance of quartzite and flint tools, typical of Middle Palaeolithic technology. Excavations at sites like Cardina-Salto do Boi have uncovered stratified deposits with stone tools and faunal remains, shedding light on subsistence strategies and mobility patterns. As shown by the work presented by Patricia Ramos & Thierry Aubry, the tools from these layers exhibit a range of core reduction techniques, including Levallois flaking. The chosen approach for studying the lithic assemblage emphasizes the significance of raw materials in defining the technological behaviours employed by Neanderthal groups. Specifically, the study highlights the intensive use of quartz as a primary resource. The classification of different types of quartz, based on defined criteria and categories, reveals variations in material selection and technological practices across the analysed layers. This detailed analysis allows for a deeper interpretation of the technological strategies adopted by Neanderthal groups at the Cardina-Salto do Boi site. The work of Patricia Ramose and Thierry Aubry demonstrates how the Middle Palaeolithic record of the Côa Valley continues to provide interesting insights into Neanderthal life in the Iberian Peninsula. 

 

References

Aubry, T., Barbosa, A. F., Luís, L., Santos, A. T., and Silvestre, M. (2016). Quartz use in the absence of flint: Middle and Upper Palaeolithic raw material economy in the Côa Valley (North-eastern Portugal). Quaternary International, 424, 113–129. https://doi.org/10.1016/j.quaint.2015.11.067

Aubry, T., Dimuccio, L. A., Almeida, M., Neves, M. J., Angelucci, D. E., and Cunha, L. (2011). Palaeoenvironmental forcing during the Middle–Upper Palaeolithic transition in central-western Portugal. Quaternary Research, 75, 66–79. https://doi.org/10.1016/j.yqres.2010.11.002

Aubry, T., Luís, L., Llach, J. M., and Matias, H. (2012). We will be known by the tracks we leave behind: Exotic lithic raw materials, mobility and social networking among the Côa Valley foragers (Portugal). Journal of Anthropological Archaeology, 31(4), 528–550. https://doi.org/10.1016/j.jaa.2012.05.003

Cardoso, J. L., and Cascalheira, J. (2024). 40,000 years later: what we know about the presence of Neanderthals in Portuguese territory and their extinction. Academia das Ciências de Lisboa. https://doi.org/10.58164/qhdw-y588

Cascalheira, J., Gonçalves, C., and Maio, D. (2022). The spatial patterning of Middle Palaeolithic human settlement in westernmost Iberia. Journal of Quaternary Science, 37(2), 291–299. https://doi.org/10.1002/JQS.3286

Cunha, P. P., Martins, A. A., Buylaert, J. P., Murray, A. S., Gouveia, M. P., Font, E., Pereira, T., Figueiredo, S., Ferreira, C., Bridgland, D. R., Yang, P., Stevaux, J. C., and Mota, R. (2019). The lowermost Tejo River terrace at Foz do Enxarrique, Portugal: A palaeoenvironmental archive from c. 60–35 ka and its implications for the last Neanderthals in westernmost Iberia. Quaternary, 2(3). https://doi.org/10.3390/quat2010003

Marks, A. E., Bich, N., Ferring, C. R., and Zilhão, J. (1994). Upper pleistocene prehistory in portuguese estremadura: Results of preliminary research. Journal of Field Archaeology, 21(1), 53–68. https://doi.org/10.1179/JFA.1994.21.1.53

Marks, A., Monigal, K., and Zilhão, J. (2001). The lithic assemblages of the Late Mousterian at Gruta de Oliveira, Almonda, Portugal. Trabalhos de Arquelogia, 17, 145–154.

Patrícia O. S. Ramos, and Thierry J. Aubry (2024) Latest updates on the study of the Middle Palaeolithic Lithic assemblages of Cardina- Salto do Boi site (Côa Valley, Portugal) . OSF preprints, ver. 11 peer-reviewed and recommended by PCI Archaeology https://doi.org/10.31219/osf.io/s3jd2

Zilhão, J. (2001). Middle Paleolithic settlement patterns in Portugal. In N. Conard (Ed.), Settlement dynamics of the Middle Palaeolithic and Middle Stone Age (pp. 597–608). Kerns Verlag.

Zilhão, J., Angelucci, D. E., Araújo Igreja, M., Arnold, L. J., Badal, E., Callapez, P., Cardoso, J. L., d’Errico, F., Daura, J., Demuro, M., Deschamps, M., Dupont, C., Gabriel, S., Hoffmann, D. L., Legoinha, P., Matias, H., Monge Soares, A. M., Nabais, M., Portela, P., … Souto, P. (2020). Last Interglacial Iberian Neandertals as fisher-hunter-gatherers. Science, 367(6485). https://doi.org/10.1126/SCIENCE.AAZ7943

Zilhão, J., Angelucci, D. E., Arnold, L. J., d’Errico, F., Dayet, L., Demuro, M., Deschamps, M., Fewlass, H., Gomes, L., Linscott, B., Matias, H., Pike, A. W. G., Steier, P., Talamo, S., and Wild, E. M. (2021). Revisiting the Middle and Upper Palaeolithic archaeology of Gruta do Caldeirão (Tomar, Portugal). PLoS ONE, 16(10 October). https://doi.org/10.1371/JOURNAL.PONE.0259089

 

Latest updates on the study of the Middle Palaeolithic Lithic assemblages of Cardina- Salto do Boi site (Côa Valley, Portugal) Patrícia O. S. Ramos, Thierry J. Aubry<p>Cardina-Salto do Boi (Guarda, Portugal) is one of the few studied sites with Middle Palaeolithic occupations in the Côa Valley. These span MIS 6 to MIS 3, which constitutes a favourable circumstance for studying dwelling dynamics diachronically...Lithic technology, Middle PalaeolithicSara Daffara2024-03-30 10:16:56 View
17 Jun 2022
article picture

Light in the Cave: Opal coating detection by UV-light illumination and fluorescence in a rock art context. Methodological development and application in Points Cave (Gard, France)

New method for the in situ detection and characterisation of amorphous silica in rock art contexts

Recommended by based on reviews by Alain Queffelec, Laure Dayet and 1 anonymous reviewer

Silica coating developed in cave art walls had an impact in the preservation of the paintings themselves. Despite it still exists a controversy about whether or not the effects contribute to the preservation of the artworks; it is evident that identifying these silica coatings would have an impact to assess the taphonomy of the walls and the paintings preserved on them. Unfortunately, current techniques -especially non-invasive ones- can hardly address amorphous silica characterisation. Thus, its presence is often detected on laboratory observations such as SEM or XRD analyses. In the paper “Light in the Cave: Opal coating detection by UV-light illumination and fluorescence in a rock art context - Methodological development and application in Points Cave (Gard, France)”, Quiers and collaborators propose a new method for the in situ detection and characterisation of amorphous silica in a rock art context based on UV laser-induced fluorescence (LIF) and UV illumination [1].

The results from both methods presented by the authors are convincing for the detection of U-silica mineralisation (U-opal in the specific case of study presented). This would allow access to a fast and cheap method to identify this kind of formations in situ in decorated caves. Beyond the relationship between opal coating and the preservation of the rock art, the detection of silica mineralisation can have further implications. First, it can help to define spot for sampling for pigment compositions, as well as reconstruct the chronology of the natural history of the caves and its relation with the human frequentation and activities. In conclusion, I am glad to recommend this original research, which offers a new approach to the identification of geological processes that affect -and can be linked with- the Palaeolithic cave art.

[1] Quiers, M., Chanteraud, C., Maris-Froelich, A., Chalmin-Aljanabi, E., Jaillet, S., Noûs, C., Pairis, S., Perrette, Y., Salomon, H., Monney, J. (2022) Light in the Cave: Opal coating detection by UV-light illumination and fluorescence in a rock art context. Methodological development and application in Points Cave (Gard, France). HAL, hal-03383193, ver. 5 peer-reviewed and recommended by Peer community in Archaeology. https://hal.archives-ouvertes.fr/hal-03383193v5

Light in the Cave: Opal coating detection by UV-light illumination and fluorescence in a rock art context. Methodological development and application in Points Cave (Gard, France) Marine Quiers, Claire Chanteraud, Andréa Maris-Froelich, Émilie Chalmin-Aljanabi, Stéphane Jaillet, Camille Noûs, Sébastien Pairis, Yves Perrette, Hélène Salomon, Julien Monney<p style="text-align: justify;">Silica coatings development on rock art walls in Points Cave questions the analytical access to pictorial matter specificities (geochemistry and petrography) and the rock art conservation state in the context of pig...Archaeometry, Europe, Rock art, Taphonomy, Upper PalaeolithicAitor Ruiz-Redondo2021-10-25 11:12:48 View
10 Jan 2024
article picture

Linking Scars: Topology-based Scar Detection and Graph Modeling of Paleolithic Artifacts in 3D

A valuable contribution to automated analysis of palaeolithic artefacts

Recommended by ORCID_LOGO based on reviews by Lutz Schubert and 1 anonymous reviewer

In this paper (Linsel/Bullenkamp/Mara 2024), the authors propose an automatic system for scar-ridge-pattern detection on palaeolithic artefacts based on Morse Theory. Scare-Ridge pattern recognition is a process that is usually done manually while creating a drawing of the object itself. Automatic systems to detect scars or ridges exist, but only a small amount of them is utilizing 3D data. In addition to the scar-ridges detection, the authors also experiment in automatically detecting the operational sequence, the temporal relation between scars and ridges. As a result, they can export a traditional drawing as well as graph models displaying the relationships between the scars and ridges.

After an introduction to the project and the practice of documenting palaeolithic artefacts, the authors explain their procedure in automatising the analysis of scars and ridges as well as their temporal relation to each other on these artefacts. To illustrate the process, an open dataset of lithic artefacts from the Grotta di Fumane, Italy, was used and 62 artefacts selected. To establish a Ground Truth, the artefacts were first annotated manually. The authors then continue to explain in detail each step of the automated process that follows and the results obtained.

In the second part of the paper, the results are presented. First the results of the segmentation process shows that the average percentage of correctly labelled vertices is over 91%, which is a remarkable result. The graph modelling however shows some more difficulties, which the authors are aware of. To enhance the process, the authors rightfully aim to include datasets of experimental archaeology in the future. They also aim to develop a way of detecting the operational sequence automatically and precisely.

This paper has great potential as it showcases exactly what Digital and Computational Archaeology is about: The development of new digital methods to enhance the analysis of archaeological data. While this procedure is still in development, the authors were able to present a valuable contribution to the automatization of analytical archaeology. By creating a step towards the machine-readability of this data, they also open up the way to further steps in machine learning within Archaeology.

Bibliography

Linsel, F., Bullenkamp, J. P., and Mara, H. (2024). Linking Scars: Topology-based Scar Detection and Graph Modeling of Paleolithic Artifacts in 3D, Zenodo, 8296269, ver. 3 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.5281/zenodo.8296269

Linking Scars: Topology-based Scar Detection and Graph Modeling of Paleolithic Artifacts in 3DFlorian Linsel, Jan Philipp Bullenkamp & Hubert Mara<p>Motivated by the concept of combining the archaeological practice of creating lithic artifact drawings with the potential of 3D mesh data, our goal in this project is not only to analyze the shape at the artifact level, but also to enable a mor...Computational archaeology, Europe, Lithic technology, Upper PalaeolithicSebastian Hageneuer2023-09-01 23:03:59 View
02 May 2024
article picture

Machine Learning for UAV and Ground-Captured Imagery: Toward Standard Practices

A step forward in detecting small objects in UAV data for archaeological surveying

Recommended by ORCID_LOGO based on reviews by 2 anonymous reviewers

In this paper [1], the authors describe how they apply machine learning with YOLOv5 to classify visual data, aiming to enhance understanding of archaeological phenomena before conducting destructive fieldwork. Despite challenges, the integration of machine learning with remote sensing technology was seen as transformative, enabling precise recording of areas of interest and assessment of environmental risk factors. The paper discusses successes, failures, and future directions in machine learning research, emphasising the need for standardisation and integration of streamlined methods. The application of machine learning techniques facilitates non-destructive analysis of material culture records, improving conservation efforts and offering insights into both past and contemporary phenomena. While the initial use of YOLOv5 showed potential for consistent detection of archaeological features, further refinement and dataset enlargement are deemed necessary for broader application in non-destructive archaeological surveying. The authors advocate for the integration of machine learning tools in archaeological research to save time, resources, and promote ethical digital recording practices. They highlight the importance of standardised methodologies to enhance credibility and reproducibility, aiming to contribute to the ongoing dialogue in computational archaeology.

Overall, I think this paper is a good step forward in detecting small objects in UAV data, and contains useful information for similar studies. The aim towards greater reproducibility and standardisation is of course shared more widely in the machine learning community, and this study is a good example of how to approach this.

References

[1] Sharp, K., Christofis, B., Eslamiat, H., Nepal, U. and Osores Mendives, C. (2024). Machine Learning for UAV and Ground-Captured Imagery: Toward Standard Practices. Zenodo, 8307612, ver. 5 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.5281/zenodo.8307612

Machine Learning for UAV and Ground-Captured Imagery: Toward Standard PracticesSharp Kayeleigh, Christofis Brooklyn, Eslamiat Hossein, Nepal Upesh, Osores Mendives Carlos<p>Our collaborative work began in 2019 with the intent to overcome obstacles that had arisen from the inability to access curated artifact collections from remote locations. It was our specific aim to not only create digital twins of excavated ob...Ceramics, Computational archaeology, Remote sensing, South AmericaAlex Brandsen2023-09-01 09:56:18 View
07 May 2024
article picture

Mobility and the reuse of Roman Roads for the deposition of Viking Age silver hoards in North West England

Moving away from the ritual deposition: hoards from the Viking Age, Least Cost Paths and reused Roman Roads

Recommended by ORCID_LOGO based on reviews by Sam Leggett and Scott Madry

I had the pleasure of reading ‘Mobility and the reuse of Roman Roads for the deposition of Viking Age silver hoards in North West England’ by Wyatt O. Wilcox (Wilcox 2024a). It is an honour to recommend this paper. The aim of this study is to research the relationship of 18 Viking Age hoards and their transport and depositional locations. This is studied in relation to the Roman road network and the landscape using least cost path analyses. Single finds from the Portable Antiquities Scheme (https://finds.org.uk/) are also incorporated in the study. The study deals with the distance of these Viking Age finds to these roads/least-cost-paths and the final interpretation moves away from ritual interpretation of these finds to a more mundane explanation. I feel that this could potentially open discussion also for hoards from other periods.

While both reviewers (Sam Leggett and Scott Madry) presented various suggestions to improve the first submitted version of the paper, the author has done a tremendous job to improve the paper based on the comments and even beyond these comments. The author has also deposited the Jypiter-notebook online (Wilcox 2024b), showing that he is contributing to Open Science. The first version of the dataset has been improved and updated based on the comments by the reviewers and me, improving the reproducibility of the analyses. All in all, this paper has improved and I am very glad that I can recommend this for publication, and I’d like to do so with a sentence from the review by Sam Leggett:

“this study has a lot of potential to be deployed across other regions, and time periods for similar purposes (Iron Age hoards for instance). And it will be of great interest to Viking Age experts interested in hoards, but also early medieval transport and travel.”

References

Wilcox, W. 2024a Mobility and the reuse of Roman Roads for the deposition of Viking Age silver hoards in North West England. Zenodo, 7999149, ver. 5 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.5281/zenodo.7999149

Wilcox, W. 2024b Mobility and the reuse of Roman Roads for the deposition of Viking Age silver hoards in North West England (Supplemental Material). https://doi.org/10.5281/zenodo.11067607

Mobility and the reuse of Roman Roads for the deposition of Viking Age silver hoards in North West EnglandWyatt Wilcox<p>Discussions on Viking Age silver hoards in North West England have been dominated by analysis of the material compositions of the hoards. &nbsp;Despite a multi-century research legacy concerning the material composition of the Viking Age silver...Europe, Landscape archaeology, Medieval, Spatial analysisRonald Visser2023-06-04 22:29:18 View
03 Nov 2023
article picture

Multiproxy analysis exploring patterns of diet and disease in dental calculus and skeletal remains from a 19th century Dutch population

Detection of plant-derived compounds in XIXth c. Dutch dental calculus

Recommended by ORCID_LOGO based on reviews by Mario Zimmerman and 2 anonymous reviewers

The advent of biomolecular methods has certainly increased our overall comprehension of archaeological societies. One of the materials of choice to perform ancient DNA or proteomics analyses is dental calculus[1,2], a mineralised biofilm formed during the life of one individual. Research conducted in the past few decades has demonstrated the potential of dental calculus to retrieve information about past societies health[3–6], diet[7–11], and more recently, as a putative proxy for isotopic analyses[12]. 


Based on a proof-of-concept previously published by their team[13], Bartholdy and collaborators’ paper presents the identification of compounds and their secondary metabolites derived from consumed plants in individuals from a XIXth century rural Dutch archaeological deposit[14]. Sørensen indeed demonstrated that drug intake is recorded in dental calculus, which are mineralised biofilms that can encapsulate drug compounds long after the latter are no longer detectable in blood. The liquid-chromatography coupled to mass spectrometry (LC-MS/MS)-based method developed showed the potential for archaeological applications[13]. 

Bartholdy et al. utilised the developed LC-MS/MS method to 41 buried individuals, most of them bearing pipe notches on their teeth, from the cemetery of the 19th rural settlement of Middenbeemster, the Netherlands. Along with dental calculus sampling and analysis, they undertook the skeletal and dental examination of all of the specimens in order to assess sex, age-at-death, and pathology on the two tissues. The results obtained on the dental calculus of the sampled individuals show probable consumption of tea, coffee and tobacco indicated by the detection of the various plant compounds and associated metabolites (caffeine, nicotine and salicylic acid, amongst others). 

The authors were able to place their results in perspective and propose several interpretations concerning the ingestion of plant-derived products, their survival in dental calculus and the importance of their findings for our overall comprehension of health and habits of the XIXth c. Dutch population. The paper is well-written and accessible to a non-specialist audience, maximising the impact of their study. I personally really enjoyed handling this manuscript that is not only a good piece of scientific literature but also a pleasant read, the reason why I warmly recommend this paper to be accessible through PCI Archaeology.

References

1.      Fagernäs, Z. and Warinner, C. (2023) Dental Calculus. in Handbook of Archaeological Sciences 575–590. https://doi.org/10.1002/9781119592112.ch28

2.      Wright, S. L., Dobney, K. & Weyrich, L. S. (2021) Advancing and refining archaeological dental calculus research using multiomic frameworks. STAR: Science & Technology of Archaeological Research 7, 13–30. https://doi.org/10.1080/20548923.2021.1882122

3.      Fotakis, A. K. et al. (2020) Multi-omic detection of Mycobacterium leprae in archaeological human dental calculus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190584. https://doi.org/10.1098/rstb.2019.0584

4.      Warinner, C. et al. (2014) Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. 46, 336–344. https://doi.org/10.1038/ng.2906

5.      Weyrich, L. S. et al. (2017) Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544, 357–361. https://doi.org/10.1038/nature21674

6.      Jersie-Christensen, R. R. et al. (2018) Quantitative metaproteomics of medieval dental calculus reveals individual oral health status. Nat. Commun. 9, 4744. https://doi.org/10.1038/s41467-018-07148-3

7.      Hendy, J. et al. (2018) Proteomic evidence of dietary sources in ancient dental calculus. Proc. Biol. Sci. 285. https://doi.org/10.1098/rspb.2018.0977

8.      Wilkin, S. et al. (2020) Dairy pastoralism sustained eastern Eurasian steppe populations for 5,000 years. Nat Ecol Evol 4, 346–355. https://doi.org/10.1038/s41559-020-1120-y

9.      Bleasdale, M. et al. (2021) Ancient proteins provide evidence of dairy consumption in eastern Africa. Nat. Commun. 12, 632. https://doi.org/10.1038/s41467-020-20682-3

10.   Warinner, C. et al. (2014) Direct evidence of milk consumption from ancient human dental calculus. Sci. Rep. 4, 7104. https://doi.org/10.1038/srep07104

11.   Buckley, S., Usai, D., Jakob, T., Radini, A. and Hardy, K. (2014) Dental Calculus Reveals Unique Insights into Food Items, Cooking and Plant Processing in Prehistoric Central Sudan. PLoS One 9, e100808. https://doi.org/10.1371/journal.pone.0100808

12.   Salazar-García, D. C., Warinner, C., Eerkens, J. W. and Henry, A. G. (2023) The Potential of Dental Calculus as a Novel Source of Biological Isotopic Data. in Exploring Human Behavior Through Isotope Analysis: Applications in Archaeological Research (eds. Beasley, M. M. & Somerville, A. D.) 125–152. https://doi.org/10.1007/978-3-031-32268-6_6

13.   Sørensen, L. K., Hasselstrøm, J. B., Larsen, L. S. and Bindslev, D. A. (2021) Entrapment of drugs in dental calculus - Detection validation based on test results from post-mortem investigations. Forensic Sci. Int. 319, 110647. https://doi.org/10.1016/j.forsciint.2020.110647

14.   Bartholdy, Bjørn Peare, Hasselstrøm, Jørgen B., Sørensen, Lambert K., Casna, Maia, Hoogland, Menno, Historisch Genootschap Beemster and Henry, Amanda G. (2023) Multiproxy analysis exploring patterns of diet and disease in dental calculus and skeletal remains from a 19th century Dutch population, Zenodo, 7649150, ver. 5 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.5281/zenodo.7649150

Multiproxy analysis exploring patterns of diet and disease in dental calculus and skeletal remains from a 19th century Dutch populationBartholdy, Bjørn Peare; Hasselstrøm, Jørgen B.; Sørensen, Lambert K.; Casna, Maia; Hoogland, Menno; Historisch Genootschap Beemster; Henry, Amanda G.<p>Dental calculus is an excellent source of information on the dietary patterns of past populations, including consumption of plant-based items. The detection of plant-derived residues such as alkaloids and their metabolites in dental calculus pr...Bioarchaeology, Post-medievalLouise Le Meillour Mario Zimmerman, Anonymous2023-07-31 17:21:40 View