Submit a preprint

Latest recommendationsrsstwitter

IdTitleAuthorsAbstractPictureThematic fields▼RecommenderReviewersSubmission date
10 Jan 2024
article picture

Linking Scars: Topology-based Scar Detection and Graph Modeling of Paleolithic Artifacts in 3D

A valuable contribution to automated analysis of palaeolithic artefacts

Recommended by ORCID_LOGO based on reviews by Lutz Schubert and 1 anonymous reviewer

In this paper (Linsel/Bullenkamp/Mara 2024), the authors propose an automatic system for scar-ridge-pattern detection on palaeolithic artefacts based on Morse Theory. Scare-Ridge pattern recognition is a process that is usually done manually while creating a drawing of the object itself. Automatic systems to detect scars or ridges exist, but only a small amount of them is utilizing 3D data. In addition to the scar-ridges detection, the authors also experiment in automatically detecting the operational sequence, the temporal relation between scars and ridges. As a result, they can export a traditional drawing as well as graph models displaying the relationships between the scars and ridges.

After an introduction to the project and the practice of documenting palaeolithic artefacts, the authors explain their procedure in automatising the analysis of scars and ridges as well as their temporal relation to each other on these artefacts. To illustrate the process, an open dataset of lithic artefacts from the Grotta di Fumane, Italy, was used and 62 artefacts selected. To establish a Ground Truth, the artefacts were first annotated manually. The authors then continue to explain in detail each step of the automated process that follows and the results obtained.

In the second part of the paper, the results are presented. First the results of the segmentation process shows that the average percentage of correctly labelled vertices is over 91%, which is a remarkable result. The graph modelling however shows some more difficulties, which the authors are aware of. To enhance the process, the authors rightfully aim to include datasets of experimental archaeology in the future. They also aim to develop a way of detecting the operational sequence automatically and precisely.

This paper has great potential as it showcases exactly what Digital and Computational Archaeology is about: The development of new digital methods to enhance the analysis of archaeological data. While this procedure is still in development, the authors were able to present a valuable contribution to the automatization of analytical archaeology. By creating a step towards the machine-readability of this data, they also open up the way to further steps in machine learning within Archaeology.

Bibliography

Linsel, F., Bullenkamp, J. P., and Mara, H. (2024). Linking Scars: Topology-based Scar Detection and Graph Modeling of Paleolithic Artifacts in 3D, Zenodo, 8296269, ver. 3 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.5281/zenodo.8296269

Linking Scars: Topology-based Scar Detection and Graph Modeling of Paleolithic Artifacts in 3DFlorian Linsel, Jan Philipp Bullenkamp & Hubert Mara<p>Motivated by the concept of combining the archaeological practice of creating lithic artifact drawings with the potential of 3D mesh data, our goal in this project is not only to analyze the shape at the artifact level, but also to enable a mor...Computational archaeology, Europe, Lithic technology, Upper PalaeolithicSebastian Hageneuer2023-09-01 23:03:59 View
11 Dec 2023
article picture

A meta-analysis of Final Palaeolithic/earliest Mesolithic cultural taxonomy and evolution in Europe

Questioning Final Palaeolithic and early Mesolithic cultural taxonomy with a data-driven statistical approach

Recommended by based on reviews by Dirk Leder and 2 anonymous reviewers

Cultural taxonomies are an essential tool for archaeologists working with prehistoric material cultures as they have historically been used to create the basic analytical units for studying cultural evolution through time (de Mortillet, 1883 ; Breuil, 1913). This approach has its limits as the taxonomic units are essentially etic constructions, i.e., they are defined in a cultural context exterior to the one that produced the material culture on which they are based (e.g., Pesesse, 2019). But to approach questions related to cultural evolution, one has to define archaeological units with clear geographic and chronological delineations in order to be compared synchronically and diachronically (e.g., Willey and Philips, 1958). In « A meta-analysis of Final Palaeolitic/Earliest Mesolithic cultural taxonomy and evolution in Europe », F. Riede and colleagues propose a novel and interesting approach to question the end of the Palaeolithic and beginning of the Mesolithic’s « named archaeological cultures » (NACs) analytical pertinence (Riede et al., 2023). In this particular context, NACs are indeed very numerous (n = 86) and result from complex and regional research histories. It seems thus pertinent to question the extent to which the said NACs chronological and geographic patterns result from past cultural diversity and evolution, and are not artefacts of research. 

To do so, the authors adopted a data-driven approach that they describe in detail in the paper. First, they gathered an European data base of lithic tool-kit composition, blade and bladelet technology and armature morphology at 350 key sites considered representative of NACs, dated between 15 and 11 ka (Hussain et al., 2023). These data were then analyzed using geometric morphometrics and a set of statisticaal tests in order to 1) test the coherence of these taxonomic units, and 2) test the chronological change in artefact shape variation. The authors conclude that the data set is partially biased by reasearch practices and histories, as their data-driven approach has only partially replicated traditional NACs for the european Late Palaeolithic/Early Mesolithic. However, their analysis of armature shape evolution has shown a tendency to diversification overtime, a pattern that was already observed in more « traditional » approaches. 

This study is, in my opinion, an excellent contribution for a significant step in macro-regional approaches to the archaeological record: defining discrete archaeological units that serve as a basis for subsequent analyses aimed at delineating cultural evolutionary processes. The authors propose a carefully designed and statistically grounded procedure in order to achieve these definitions in the most replicable and explicit possible manner. Taking advantage of drawings as a primary source of information is also very original despite several limitations of this approach (such as the necessary selection of most typical artefacts to be represented, the incompleteness of data publication or the difficulty to access all published work across such a large geographic area). The results of the study are convincing enough to allow the authors to discuss the pertinence of European Late Paleo/Early Mesolithic NACs, the potential epistemological and historical factors that could affect this taxonomic framework, as well as to give more weight to the traditional hypothesis of lithic cultural diversification towards the end of the Pleistocene/beginning of the Holocene in Europe. 

I would also like to underline the authors’ important efforts to ensure transparence and replicability of their study, as well as the accessibility of the data, thanks to extensive supplementary data and a data paper describing their data set in detail.

Anaïs L. Vignoles 

References

Breuil, H. (1913). Les subdivisions du paléolithique supérieur et leur signification. In Congrès international d’anthropologie et d’archéologie préhistoriques - compte-rendu de la XIVème session, tome 1:165‑238. Genève: Imprimerie Albert Kündig.

Hussain, S. T., Riede, F., Matzig, D. N., Biard, M., Crombé, P., Fernández-Lopéz de Pablo, J., Fontana, F., Groß, D., Hess, T., Langlais, M., Mevel, L., Mills, W., Moník, M., Naudinot, N., Posch, C., Rimkus, T., Stefański, D. and Vandendriessche, H. (2023). A Pan-European Dataset Revealing Variability in Lithic Technology, Toolkits, and Artefact Shapes ~15-11 Kya. Scientific Data 10 (1): 593. https://doi.org/10.1038/s41597-023-02500-9.

Mortillet, G. (1883). Le Préhistorique, antiquité de l’homme. Reinwald. Paris.

Pesesse, D. (2019). Analyser un silex, le façonner à nouveau ? Sur certains usages de la chaîne opératoire au Paléolithique supérieur. Techniques & culture, no 71: 74‑77. https://doi.org/10.4000/tc.11321.

Riede, F., Matzig, D. N., Biard, M., Crombé, P., Fernández-Lopéz de Pablo, J., Fontana, F., Groß, D., Hess, T., Langlais, M., Mevel, L., Mills, W., Moník, M., Naudinot, N., Posch, C., Rimkus, T., Stefański, D., Vandendriessche, H. and Hussain, S. T. (2023). A meta-analysis of Final Palaeolithic/earliest Mesolithic cultural taxonomy and evolution in Europe, Zenodo, 8195587., ver. 3 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.5281/zenodo.8195587

Willey, G. R. and Phillips, P. (1958). Method and Theory in American Archaeology. Chicago, IL: The University of Chicago Press.

A meta-analysis of Final Palaeolithic/earliest Mesolithic cultural taxonomy and evolution in EuropeFelix Riede, David N. Matzig, Miguel Biard, Philippe Crombé, Javier Fernández-Lopéz de Pablo, Federica Fontana, Daniel Groß, Thomas Hess, Mathieu Langlais, Ludovic Mevel, William Mills, Martin Moník, Nicolas Naudinot, Caroline Posch, Tomas Rimkus,...<p>Archaeological systematics, together with spatial and chronological information, are commonly used to infer cultural evolutionary dynamics in the past. For the study of the Palaeolithic, and particularly the European Final Palaeolithic and earl...Computational archaeology, Europe, Lithic technology, Mesolithic, Upper PalaeolithicAnaïs Vignoles2023-07-29 16:06:17 View
06 Aug 2023
article picture

A Focus on the Future of our Tiny Piece of the Past: Digital Archiving of a Long-term Multi-participant Regional Project

A meticulous description of archiving research data from a long-running landscape research project

Recommended by based on reviews by Dominik Hagmann and Iwona Dudek

The paper “A Focus on the Future of our Tiny Piece of the Past: Digital Archiving of a Long-term Multi-participant Regional Project” (Madry et al., 2023) describes practices, challenges and opportunities encountered in digital archiving of a landscape research project running in Burgundy, France for more than 45 years. As an unusually long-running multi-disciplinary undertaking working with a large variety of multi-modal digital and non-digital data, the Burgundy project has lived through the development of documentation and archiving technologies from the 1970s until today and faced many of the challenges relating to data management, preservation and migration.

The major strenght of the paper is that it provides a detailed description of the evolution of digital data archiving practices in the project including considerations about why some approaches were tested and abandoned. This differs from much of the earlier literature where it has been more common to describe individual solutions how digital archiving was either planned or was performed at one point of time. A longitudinal description of what was planned, how and why it has worked or failed so far, as described in the paper, provides important insights in the everyday hurdles and ways forward in digital archiving. As a description of a digital archiving initiative, the paper makes a valuable contribution for the data archiving scholarship as a case description of practices and considerations in one research project. For anyone working with data management in a research project either as a researcher or data manager, the text provides useful advice on important practical matters to consider ahead, during and after the project. The main advice the authors are giving, is to plan and act for data preservation from the beginning of the project rather than doing it afterwards. To succeed in this, it is crucial to be knowledgeable of the key concepts of data management—such as “digital data fixity, redundant backups, paradata, metadata, and appropriate keywords” as the authors underline—including their rationale and practical implications. The paper shows also that when and if unexpected issues raise, it is important to be open for different alternatives, explore ways forward, and in general be flexible.

The paper makes also a timely contribution to the discussion started at the session “Archiving information on archaeological practices and work in the digital environment: workflows, paradata and beyond” at the Computer Applications and Quantitative 2023 conference in Amsterdam where it was first presented. It underlines the importance of understanding and communicating the premises and practices of how data was collected (and made) and used in research for successful digital archiving, and the similar pertinence of documenting digital archiving processes to secure the keeping, preservation and effective reuse of digital archives possible.

References

Madry, S., Jansen, G., Murray, S., Jones, E., Willcoxon, L. and Alhashem, E. (2023) A Focus on the Future of our Tiny Piece of the Past: Digital Archiving of a Long-term Multi-participant Regional Project, Zenodo, 7967035, ver. 3 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.5281/zenodo.7967035

A Focus on the Future of our Tiny Piece of the Past: Digital Archiving of a Long-term Multi-participant Regional ProjectScott Madry, Gregory Jansen, Seth Murray, Elizabeth Jones, Lia Willcoxon, Ebtihal Alhashem<p>This paper will consider the practical realities that have been encountered while seeking to create a usable Digital Archiving system of a long-term and multi-participant research project. &nbsp;The lead author has been involved in archaeologic...Computational archaeology, Environmental archaeology, Landscape archaeologyIsto Huvila2023-05-24 18:46:34 View
08 Jan 2024
article picture

Comparing summed probability distributions of shoreline and radiocarbon dates from the Mesolithic Skagerrak coast of Norway

Taking the Reverend Bayes to the seaside: Improving Norwegian Mesolithic shoreline dating with advanced statistical approaches

Recommended by based on reviews by 2 anonymous reviewers

The paper entitled “Comparing summed probability distributions of shoreline and radiocarbon dates from the Mesolithic Skagerrak coast of Norway” by Isak Roalkvam and Steinar Solheim (2024) sheds new light on the degree to which shoreline dating may be used as a reliable chronological and palaeodemographic proxy in the Mesolthic of southern Norway.

Based on geologically motivated investigations of eustatic and isostatic sea-level changes, shoreline dating has long been used as a method to date archaeological sites in Scandinavia, not least in Norway (e.g., Bjerck 2008; Astrup 2018). Establishing reliable sea-level curves requires much effort and variations across regions may be substantial. While this topic has seen a great deal of attention in Norway specifically, many purely geological questions remain. In addition, dating archaeological sites by linking their elevation to previously established seal-level curves relies strongly on the foundational assumption that such sites were in fact shore-bound. Given the strong contrast between terrestrial and marine productivity in high-latitude regions such as Norway, this assumption per se is not unreasonable. It is very likely that the sea has played a decisive role in the lives of Stone Age peoples throughout (Persson et al. 2017), just as it has in later periods here. However, many confounding factors relating to both taphonomy and human behaviour are also likely to have loosened the shore/site relationship. Systematic variations driven by cultural norms about settlement location, mobility, as well as factors such as shelter construction, fuel use and a range of other possible factors could variously have impacted the validity or at least the precision of shoreline dating.

By developing a new methodology for handling and assessing a large number of shoreline dated sites, Roalkvam and Solheim use state-of-the-art Bayesian statistical methods to compare shoreline and radiocarbon dates as proxies for population activity. The probabilistic treatment of shoreline dates in this way is novel, and the divergences between the two data sets are interpreted by the authors in light of specific behavioural, cultural, and demographic changes. Many of the peaks and troughs observed in these time-series may be interpreted in light of long-observed cultural transitions while others may relate to population dynamics now also visible in palaeogenomic analyses (Günther et al. 2018; Manninen et al. 2021). Overall, this paper makes an innovative and fresh contribution to the use of shoreline dating in Norwegian archaeology, specifically by articulating it with recent developments in Open Science and data-driven approaches to archaeological questions (Marwick et al. 2017).

References

Astrup, P. M. 2018. Sea-Level Change in Mesolithic Southern Scandinavia : Long- and Short-Term Effects on Society and the Environment. Aarhus: Aarhus University Press.

Bjerck, H. B. 2008. Norwegian Mesolithic Trends: A Review. In Mesolithic Europe, edited by Geoff Bailey and Penny Spikins, 60–106. Cambridge: Cambridge University Press.

Günther, T., Malmström, H., Svensson, E. M., Omrak, A., Sánchez-Quinto, F., Kılınç, G. M., Krzewińska, M. et al. 2018. Population Genomics of Mesolithic Scandinavia: Investigating Early Postglacial Migration Routes and High-Latitude Adaptation. PLOS Biology 16 (1): e2003703. https://doi.org/10.1371/journal.pbio.2003703

Manninen, M. A., Damlien, H., Kleppe, J. I., Knutsson, K., Murashkin, A., Niemi, A. R., Rosenvinge, C. S. and Persson, P. 2021. First Encounters in the North: Cultural Diversity and Gene Flow in Early Mesolithic Scandinavia. Antiquity 95 (380): 310–28. https://doi.org/10.15184/aqy.2020.252

Marwick, B., d’Alpoim Guedes, J. A., Barton, C. M., Bates, L. A., Baxter, M., Bevan, A., Bollwerk, E. A. et al. 2017. Open Science in Archaeology. The SAA Archaeological Record 17 (4): 8–14. https://doi.org/10.31235/osf.io/72n8g

Persson, P., Riede, F., Skar, B., Breivik, H. M. and Jonsson, L. 2017. The Ecology of Early Settlement in Northern Europe: Conditions for Subsistence and Survival. Sheffield: Equinox.

Roalkvam, I. and Solheim, S. (2024). Comparing summed probability distributions of shoreline and radiocarbon dates from the Mesolithic Skagerrak coast of Norway, SocArXiv, 2f8ph, ver. 5 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.31235/osf.io/2f8ph

Comparing summed probability distributions of shoreline and radiocarbon dates from the Mesolithic Skagerrak coast of NorwayIsak Roalkvam, Steinar Solheim <p>By developing a new methodology for handling and assessing a large number of shoreline dated sites, this paper compares the summed probability distribution of radiocarbon dates and shoreline dates along the Skagerrak coast of south-eastern Norw...Computational archaeology, Dating, Europe, Mesolithic, PaleoenvironmentFelix Riede2023-09-26 16:43:29 View
22 Apr 2024
article picture

Cultural Significance Assessment of Archaeological Sites for Heritage Management: From Text of Spatial Networks of Meanings

How Semantic Technologies and Spatial Networks Can Enhance Archaeological Resource Management

Recommended by ORCID_LOGO based on reviews by Dominik Lukas and 1 anonymous reviewer

After a thorough review and consideration of the revised manuscript titled "Cultural Significance Assessment of Archaeological Sites for Heritage Management: From Text to Spatial Networks of Meanings" by Yael Alef and Yuval Shafriri [1], I am recommending the paper for publication. The authors have made significant strides in addressing the feedback from the initial review process, notably enhancing the manuscript's clarity, methodological detail, and overall contribution to the field of Archaeological Resource Management (ARM).

On balance I think the paper competently navigates the shift from a traditional significance-focused assessment of isolated archaeological sites to a more holistic and interconnected approach, leveraging graph data models and spatial networks. This transition represents an advancement in the field, offering deeper insights into the sociocultural dynamics of archaeological sites. The case study of ancient synagogues in northern Israel, particularly the Huqoq Synagogue, serves as a compelling illustration of the potential of semantic technologies to enrich our understanding of cultural heritage.

Significantly, the authors have responded to the call for a clearer methodological framework by providing a more detailed exposition of their use of knowledge graph visualization and semantic technologies. This response not only strengthens the paper's scientific rigor but also enhances its accessibility and applicability to a broader audience within the conservation and heritage management community.

However, I do think it remains important to acknowledge areas where further work could enrich the paper's contribution. While the manuscript makes notable advancements in the technical and methodological domains, the exploration of the ethical and political implications of semantic technologies in ARM remains less developed. Recognizing the complex interplay of ethical and political considerations in archaeological assessments is crucial for the responsible advancement of the field. Thus, I suggest that future work could productively focus on these dimensions, offering a more comprehensive view of the implications of integrating semantic technologies into heritage management practices. I don't think that this omission is a reason to withold the paper for publication or seek further review. In fact I think it stands alone a paper quite well. Perhaps the authors might consider this as a complementary line of inquiry in their future work in the field.

In conclusion then, I believe the revised manuscript represents a valuable addition to the literature, pushing boundaries of how we assess, understand, and manage archaeological resources. Its focus on semantic technologies and the creation of spatial networks of meanings marks a significant step forward in the field. I believe its publication will stimulate further research and discussion, particularly in the realms of ethical and political considerations, which remain ripe for exploration. Therefore, I'm happy to endorse the publication of this manuscript.

Reference

[1] Alef, Y and Shafriri, Y. (2024). Cultural Significance Assessment of Archaeological Sites for Heritage Management: From Text of Spatial Networks of Meanings. Zenodo, 8309992, ver. 5 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.5281/zenodo.8309992

Cultural Significance Assessment of Archaeological Sites for Heritage Management: From Text of Spatial Networks of MeaningsYael Alef, Yuval Shafriri<p>This study examines the shift towards a values-based approach for Archaeological Resource Management (ARM), emphasizing the integration of Context-Based Significance Assessment (CBSA) with semantic technologies into digital ARM inventories. We ...Computational archaeology, Conservation/Museum studies, Spatial analysisJames Stuart Taylor2023-09-01 22:24:15 View
21 Nov 2022
article picture

Removing Barriers to Reproducible Research in Archaeology

Three levels of reproducible workflow remove barriers for archaeologists and increase accessibility

Recommended by ORCID_LOGO based on reviews by Sam Leggett, Cyler Conrad, Cheng Liu and Lisa Lodwick

Over the last decade, a small but growing community of archaeologists, from a diversity of intellectual and demographic backgrounds, have been striving for computational reproducibility in their published research. In their survey of the accomplishments of this thriving community, Emma Karoune and Esther Plomp (2022) analyzed the wide variety of approaches researchers have taken to enhance the reproducibility of their research. A key contribution of this paper is their excellent synthesis of diverse approaches into three levels of increasing complexity. This is helpful because it provides multiple entry points for researchers new to the challenge of fortifying their research. Many researchers assume that computational reproducibility is only achievable if they have a high degree of technical skill with computers, or is only necessary if their work is very computationally intensive. Karoune and Plomp give three compelling reasons why reproducibility is important for all archaeological research, and through their three levels they demonstrate that how these levels can be accomplished with basic, non-specialized computer skills and widely used free software. They showcase exemplary work from a variety of archaeologists to show how practical and achievable reproducible research is for all archaeologists. They advocate for archaeologists to use the most widely used and supported tools and services to support their reproducible research, such as the R and Python programming languages for data analysis, and Git and GitHub for collaboration. 

This paper, with its extensive appendix including thoughtful responses to frequently asked questions about reproducible research in archaeology, is likely to have a wide reach and influence, beyond previous works on this topic that have largely focused on technical details. Karoune and Plomp have provided the on-ramp for a generation of archaeologists who will find their questions about reproducible research answered here. They will also find an agreeable entry point to reproducible research in one of the three levels described by the authors. Will every archaeologist embrace this way of working? Should they? The work of Leonelli (2018) can help us anticipate the answers to these questions. Leonelli asks where are the limits to reproducibility, and how do the characteristics of different ways of knowing affect the desirability of reproducibility? Leonelli's work invites us to consider that there will be archaeologists coming from different epistemic cultures for whom the motivations presented by Karoune and Plomp will not resonate. For example, archaeologists engaged in mostly hermeneutical social science and humanities research, who do little or no quantitative analysis and statistics, are unlikely to see reproducibility as meaningful or desirable for their work. We can describe these researchers as working in interpretative or constructivist epistemic cultures. In these cultures, the particulars of how an individual researcher engages with their subject are exclusive and unique, and they would argue it cannot be fully captured or shared in an meaningful way (Elman and Kapiszewski 2017). Here, knowledge is situational, emerging from a specific, once-off combination of people and circumstances. One example in archaeology is the chaîne opératoire approach of stone artefact analysis, which Monnier and Missal (2014:61) describe as "based upon the analyst's experience and intuition, and it is not replicable, nor quantifiable". To make sense of this example we can draw on Galison's (1997) concept of 'image traditions' and 'logic traditions'. An image tradition is a way of knowing that is qualitative, based on composing narratives from drawings and photographs. A logic tradition is based on the use of instruments and statistical methods to collect standardised quantitative data. Chaîne opératoire approaches fall into the image tradition, along with many other ways of working in archaeology that do not generate numbers or use them to support claims about the past. Archaeologists working in a logic tradition will find reproducible research to be more meaningful than those working in an image tradition.

We should be mindful not to claim that one epistemic culture is superior to another because reproducibility is not meaningful or attainable for researchers in one culture. Such a claim would threaten the plurality that is essential for the reliability of scientific knowledge (Massimi 2022). Instead we should identify those communities in archaeology where reproducible research is both meaningful and attainable, but has not yet been widely embraced. That is the where the most beneficial effects can be expected. According to Leonelli's (2018) framework, we can recognise these communities by a few basic characteristics. For example: they are doing computationally intensive archaeology, such as using or writing software to collect, simulate, analyse or visualise data; they are doing experimental archaeology; or they are making knowledge claims that are supported by tables of numeric data and data visualisations. Archaeologists whose work shares one or more of these characteristics will find the guidance provided here by Karoune and Plomp to be highly instructive and relevant, and stand the most to benefit from it.  ​​

But it is not only individual archaeological scientists that have potential to benefit from how Karoune and Plomp have lowered the barriers to reproducible research. An especially important implication of this paper is that by lowering the barriers to reproducible research, Karoune and Plomp help us all to lower barriers to participation in archaeology in general. Documenting our research transparently, and sharing our materials (such as data and code and so on) openly, can profoundly change how others can participate in archaeology. By doing this, we are enabling students and researchers elsewhere, for example in low and middle income locations, to use our materials in their teaching and learning. Other researchers and students can apply our methods to their data, and combine their data with ours to achieve syntheses beyond what a single project can do. Similarly, for archaeologists working with local, descendant or marginalized communities, the tools of reproducible research are vital for enabling community members to have full access to the archaeological process, and thus reproducibility may be considered a necessity for decolonising the discipline. Karoune and Plomp present the CARE principles (Carroll et al. 2020) to guide archaeologists in ensuring community control of data so that reproducibility can be ethically accomplished with community safety and well-being as a priority. This may have a profoundly positive impact on the demographics of archaeology, as it lowers the barriers of meaningful participation by people far beyond our immediate groups of collaborators. 

Making archaeology more accessible is of critical importance in stemming the negative social impacts of pseudoarchaeologists, who often claim that archaeologists actively suppress the truth of the archaeological record through secrecy, elitism, and exclusiveness. The harm in this is twofold. First, that pseudoarchaeology typically erases Indigenous heritage by claiming that their past achievements were due to an ancient, extinct advanced civilization, not Indigenous people. These claims are often adopted by white supremacists to support racist and antisemitic conspiracy theories (Turner and Turner 2021), which sometimes leads to prejudice, physical violence, radicalization and extremism. A second type of harm that can come from claims of secrecy and elitism is it drains public trust in experts, leading to science denial. Not only trust in archaeologists, but trust in many kinds of experts, including those working on urgent contemporary issues such as public health and climate change. Karoune and Plomp's work is important here because it provides a practical and affordable pathway for archaeologists to fight claims of secrecy and elitism by sharing their work in ways that make it possible for non-academics to inspect the analyses and logic in detail. Claims of secrecy and elitism can be easily countered by openness, transparently and reproducibility by archaeologists. This is not only useful for tackling pseudoarchaeologists, but also in enacting an ethic of care, framing members of the public as people that not only care about archaeology as part of humanity's shared heritage, but also care for the construction of reliable interpretations of the archaeological record to provide secure and authentic foundations for their social identities and relationships (Wylie et al 2018; de la Bellacasa 2011). By striving for reproducible research in the way described by Karoune and Plomp, we are practicing a kind of reciprocal care among ourselves as archaeologists, and between archaeologists and members of the public as two communities who care about the human past. 

 

References

Karoune, E., and Plomp, E. (2022). Removing Barriers to Reproducible Research in Archaeology. Zenodo, 7320029, ver. 5 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.5281/zenodo.7320029

de la Bellacasa, M. P. (2011). Matters of care in technoscience: Assembling neglected things. Social Studies of Science, 41(1), 85–106. https://doi.org/10.1177/0306312710380301

Carroll, S. R., Garba, I., Figueroa-Rodríguez, O. L., Holbrook, J., Lovett, R., Materechera, S., Parsons, M., Raseroka, K., Rodriguez-Lonebear, D., Rowe, R., Sara, R., Walker, J. D., Anderson, J., and Hudson, M. (2020). The CARE Principles for Indigenous Data Governance. Data Science Journal, 19(1), Article 1. https://doi.org/10.5334/dsj-2020-043​

Elman, C., and Kapiszewski, D. (2017). Benefits and Challenges of Making Qualitative Research More Transparent. Inside Higher Ed 2017,  http://web.archive.org/web/20220407064134/https://www.insidehighered.com/blogs/rethinking-research/benefits-and-challenges-making-qualitative-research-more-transparent (accessed 21 Oct, 2022). 

Galison, P. (1997). Image and logic: a material culture of microphysics. Chicago (IL): University of Chicago Press.

Leonelli, S. (2018). Re-Thinking Reproducibility as a Criterion for Research Quality [preprint]. Available online: http://philsci-archive.pitt.edu/id/eprint/14352 (Accessed 21 Oct 2022).

Massimi, M. (2022). Perspectival realism. Oxford University Press.

Monnier, G. F., and Kele M.. "Another Mousterian debate? Bordian facies, chaîne opératoire technocomplexes, and patterns of lithic variability in the western European Middle and Upper Pleistocene." Quaternary International 350 (2014): 59-83. https://doi.org/10.1016/j.quaint.2014.06.053

Turner, D. D., and Turner, M. I. (2021). “I’m Not Saying It Was Aliens”: An Archaeological and Philosophical Analysis of a Conspiracy Theory. In A. Killin and S. Allen-Hermanson (Eds.), Explorations in Archaeology and Philosophy (pp. 7–24). Springer International Publishing. https://doi.org/10.1007/978-3-030-61052-4_2

​Wylie, C., Neeley, K., and Ferguson, S. (2018). Beyond Technological Literacy: Open Data as Active Democratic Engagement? Digital Culture & Society, 4(2), 157–182. https://doi.org/10.14361/dcs-2018-0209​​​

 

​​​​​

Removing Barriers to Reproducible Research in ArchaeologyEmma Karoune and Esther Plomp<p>Reproducible research is being implemented at different speeds in different disciplines, and Archaeology is at the start of this journey. Reproducibility is the practice of reanalysing data by taking the same steps and producing the same or sim...Computational archaeologyBen Marwick2022-06-07 10:02:46 View
02 Sep 2023
article picture

Research workflows, paradata, and information visualisation: feedback on an exploratory integration of issues and practices - MEMORIA IS

Using information visualisation to improve traceability, transmissibility and verifiability in research workflows

Recommended by based on reviews by Adéla Sobotkova and 2 anonymous reviewers

The paper “Research workflows, paradata, and information visualisation: feedback on an exploratory integration of issues and practices - MEMORIA IS” (Dudek & Blaise, 2023) describes a prototype of an information system developed to improve the traceability, transmissibility and verifiability of archaeological research workflows. A key aspect of the work with MEMORIA is to make research documentation and the workflows underpinning the conducted research more approachable and understandable using a series of visual interfaces that allow users of the system to explore archaeological documentation, including metadata describing the data and paradata that describes its underlying processes. The work of Dudek and Blaise address one of the central barriers to reproducibility and transparency of research data and propose a set of both theoretically and practically well-founded tools and methods to solve this major problem. From the reported work on MEMORIA IS, information visualisation and the proposed tools emerge as an interesting and potentially powerful approach for a major push in improving the traceability, transmissibility and verifiability of research data through making research workflows easier to approach and understand.

In comparison to technical work relating to archaeological data management, this paper starts commendably with a careful explication of the conceptual and epistemic underpinnings of the MEMORIA IS both in documentation research, knowledge organisation and information visualisation literature. Rather than being developed on the basis of a set of opaque assumptions, the meticulous description of the MEMORIA IS and its theoretical and technical premises is exemplary in its transparence and richness and has potential for a long-term impact as a part of the body of literature relating to the development of archaeological documentation and documentation tools. While the text is sometimes fairly densely written, it is worth taking the effort to read it through. Another major strength of the paper is that it provides a rich set of examples of the workings of the prototype system that makes it possible to develop a comprehensive understanding of the proposed approaches and assess their validity.

As a whole, this paper and the reported work on MEMORIA IS forms a worthy addition to the literature on and practical work for developing critical infrastructures for data documentation, management and access in archaeology. Beyond archaeology and the specific context of the discussed work discussed this paper has obvious relevance to comparable work in other fields.

References

Dudek, I. and Blaise, J.-Y. (2023) Research workflows, paradata, and information visualisation: feedback on an exploratory integration of issues and practices - MEMORIA IS, Zenodo, 8252923, ver. 3 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.5281/zenodo.8252923
Research workflows, paradata, and information visualisation: feedback on an exploratory integration of issues and practices - MEMORIA ISDudek Iwona, Blaise Jean-Yves<p>The paper presents an exploratory web information system developed as a reaction to practical and epistemological questions, in the context of a scientific unit studying the architectural heritage (from both historical sciences perspective, and...Computational archaeologyIsto Huvila2023-05-02 12:50:39 View
23 Nov 2023
article picture

Percolation Package - From script sharing to package publication

Sharing Research Code in Archaeology

Recommended by ORCID_LOGO based on reviews by Thomas Rose, Joe Roe and 1 anonymous reviewer

​The paper “Percolation Package – From Script Sharing to Package Publication” by Sophie C. Schmidt and Simon Maddison (2023) describes the development of an R package designed to apply Percolation Analysis to archaeological spatial data. In an earlier publication, Maddison and Schmidt (2020) describe Percolation Analysis and provide case studies that demonstrate its usefulness at different spatial scales. In the current paper, the authors use their experience collaborating to develop the R package as part of a broader argument for the importance of code sharing to the research process. 

The paper begins by describing the development process of the R package, beginning with borrowing code from a geographer, refining it to fit archaeological case studies, and then collaborating to further refine and systematize the code into an R package that is more easily reusable by other researchers. As the review by Joe Roe noted, a strength of the paper is “presenting the development process as it actually happens rather than in an idealized form.” The authors also include a section about the lessons learned from their experience. 

Moving on from the anecdotal data of their own experience, the authors also explore code sharing practices in archaeology by briefly examining two datasets. One dataset comes from “open-archaeo” (https://open-archaeo.info/), an on-line list of open-source archaeological software maintained by Zack Batist. The other dataset includes articles published between 2018 and 2023 in the Journal of Computer Applications in Archaeology. Schmidt and Maddison find that these two datasets provide contrasting views of code sharing in archaeology: many of the resources in the open-archaeo list are housed on Github, lack persistent object identifiers, and many are not easily findable (other than through the open-archaeo list). Research software attached to the published articles, on the other hand, is more easily findable either as a supplement to the published article, or in a repository with a DOI.

The examination of code sharing in archaeology through these two datasets is preliminary and incomplete, but it does show that further research into archaeologists’ code-writing and code-sharing practices could be useful. Archaeologists often create software tools to facilitate their research, but how often?  How often is research software shared with published articles? How much attention is given to documentation or making the software usable for other researchers? What are best (or good) practices for sharing code to make it findable and usable? Schmidt and Maddison’s paper provides partial answers to these questions, but a more thorough study of code sharing in archaeology would be useful. Differences among journals in how often they publish articles with shared code, or the effects of age, gender, nationality, or context of employment on attitudes toward code sharing seem like obvious factors for a future study to consider.

Shared code that is easy to find and easy to use benefits the researchers who adopt code written by others, but code authors also have much to gain by sharing. Properly shared code becomes a citable research product, and the act of code sharing can lead to productive research collaborations, as Schmidt and Maddison describe from their own experience. The strength of this paper is the attention it brings to current code-sharing practices in archaeology. I hope the paper will also help improve code sharing in archaeology by inspiring more archaeologists to share their research code so other researchers can find and use (and cite) it. 

References

Maddison, M.S. and Schmidt, S.C. (2020). Percolation Analysis – Archaeological Applications at Widely Different Spatial Scales. Journal of Computer Applications in Archaeology, 3(1), p.269–287. https://doi.org/10.5334/jcaa.54 

Schmidt, S. C., and Maddison, M. S. (2023). Percolation Package - From script sharing to package publication, Zenodo, 7966497, ver. 3 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.5281/zenodo.7966497

Percolation Package - From script sharing to package publicationSophie C Schmidt; Simon Maddison<p>In this paper we trace the development of an R-package starting with the adaptation of code from a different field, via scripts shared between colleagues, to a published package that is being successfully used by researchers world-wide. Our aim...Computational archaeologyJames Allison2023-05-24 15:40:15 View
05 Jan 2024
article picture

Transforming the CIDOC-CRM model into a megalithic monument property graph

Informative description of a project implementing a CIDOC-CRM based native graph database for representing megalithic information

Recommended by based on reviews by 2 anonymous reviewers

The paper “Transforming the CIDOC-CRM model into a megalithic monument property graph” describes an interesting endeavour of developing and implementing a CIDOC-CRM based knowledge graph using a native graph database (Neo4J) to represent megalithic information (Câmara et al. 2023). While there are earlier examples of using native graph databases and CIDOC-CRM in diverse heritage contexts, the present paper is useful addition to the literature as a detailed description of an implementation in the context of megalithic heritage. The paper provides a demonstration of a working implementation, and guidance for future projects. The described project is also documented to an extent that the paper will open up interesting opportunities to compare the approach to previous and forthcoming implementations. The same applies to the knowledge graph and use of CIDOC-CRM in the project.

Readers interested in comparing available technologies and those who are developing their own knowledge graphs might have benefited of a more detailed description of the work in relation to the current state-of-the-art and what the use of a native graph database in the built-heritage contexts implies in practice for heritage documentation beyond that it is possible and it has potentially meaningful performance-related advantages. While also the reasons to rely on using plain CIDOC-CRM instead of extensions could have been discussed in more detail, the approach demonstrates how the plain CIDOC-CRM provides a good starting point to satisfy many heritage documentation needs.

As a whole, the shortcomings relating to positioning the work to the state-of-the-art and reflecting and discussing design choices do not reduce the value of the paper as a valuable case description for those interested in the use of native graph databases and CIDOC-CRM in heritage documentation in general and the documentation of megalithic heritage in particular.

References

Câmara, A., de Almeida, A. and Oliveira, J. (2023). Transforming the CIDOC-CRM model into a megalithic monument property graph, Zenodo, 7981230, ver. 4 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.5281/zenodo.7981230

Transforming the CIDOC-CRM model into a megalithic monument property graphAriele Câmara, Ana de Almeida, João Oliveira <p>This paper presents a method to store information about megalithic monuments' building components as graph nodes in a knowledge graph (KG). As a case study we analyse the dolmens from the region of Pavia (Portugal). To build the KG, information...Computational archaeologyIsto Huvila2023-05-29 13:46:49 View
02 May 2024
article picture

ARIADNEplus Visual Media Service 3D configurator: toward full guided publication of high-resolution 3D data

ARIADNEplus Visual Media Service 3D configurator: a new tool for the visual organisation of 3D datasets

Recommended by ORCID_LOGO based on reviews by Sebastian Hageneuer, Vayia Panagiotidis, Erik Champion and Martina Trognitz

The manuscript "ARIADNEplus Visual Media Service 3D configurator: toward full guided publication of high-resolution 3D data​" by Potenziani et al. [1] provides an excellent introduction to the Visual Media Service 3D Configurator.  This is an exciting tool, focused on cultural heritage, that forms part of the Visual Media Service, a web-based platform for uploading a range of complex data sets, including high-resolution images, Reflectance Transformation Imaging images and 3D models and transforming them into an appropriate format for interation and visualisation on the web.  The 3D Configurator Tool provides researchers with a wizard which assist with the presentation of 3D models.

This manuscript provides a history and context for the development of the Visual Media Service and previous related tools such as 3DHOP, Nexus and Relight/OpenLIME.  It also provides detailed information about the functionality of the 3D Configurator, including the Alignment, Material & Light, Navigation, Interface and Annotation steps.  The Discussion section provides information about applications and users of the Visual Media Service, current limitations and planned future developments.

Reviewers Hageneuer, Champion, Trognitz and Panagiotidis all provided important suggestions to the authors which have improved the clarity and scope of this manuscript.  While this manscript does not present a case study using this tool, I recommend it to readers as a detailed and clear introduction to the Visual Media Service 3D configurator which may inspire them to use this for their own research.

References

[1] Potenziani, M., Ponchio, F., Callieri, M., and Cignoni, P. (2024). ARIADNEplus Visual Media Service 3D configurator: toward full guided publication of high-resolution 3D data. Zenodo, 8075050, ver. 5 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.5281/zenodo.10894515​

ARIADNEplus Visual Media Service 3D configurator: toward full guided publication of high-resolution 3D data Potenziani, Marco; Ponchio, Federico; Callieri, Marco; Cignoni, Paolo<p>The use of digital visual media in everyday work is nowadays a common practice in many different domains, including Cultural Heritage (CH). Because of that, the presence of digital datasets in CH archives and repositories is becoming more and m...Computational archaeologyIan Moffat2023-06-23 17:37:47 View