Submit a preprint

Latest recommendationsrsstwitter

IdTitleAuthorsAbstractPictureThematic fieldsRecommenderReviewers▲Submission date
12 Feb 2024
article picture

First evidence of a Palaeolithic occupation of the Po plain in Piedmont: the case of Trino (north-western Italy)

Not Simply the Surface: Manifesting Meaning in What Lies Above.

Recommended by based on reviews by Lawrence Todd, Jason LaBelle and 2 anonymous reviewers

The archaeological record comes in many forms. Some, such as buried sites from volcanic eruptions or other abrupt sedimentary phenomena are perhaps the only ones that leave relatively clean snapshots of moments in the past. And even in those cases time is compressed. Much, if not all other archaeological record is a messy affair. Things, whatever those things may be, artifacts or construction works (i.e., features), moved, modified, destroyed, warped and in a myriad of ways modified from their behavioral contexts. Do we at some point say the record is worthless? Not worth the effort or continuing investigation. Perhaps sometimes this may be justified, but as Daffara and colleagues show, heavily impacted archaeological remains can give us clues and important information about the past. Thoughtful and careful prehistorians can make significant contributions from what appear to be poor archaeological records. 

            In the case of Daffara and colleagues, a number of important theoretical cross-sections can be recognized. For a long time surface archaeology was thought of simply as a way of getting a preliminary peak at the subsurface. From some of the earliest professional archaeologists (e.g., Kidder 1924, 1931; Nelson 1916) to the New Archaeologists of the 1960s, the link between the surface and subsurface was only improved in precision and systematization (Binford et al. 1970). However, at Hatchery West Binford and colleagues not only showed that surface material can be used more reliably to get at the subsurface, but that substantive behavioral inferences can be made with the archaeological record visible on the surface.

            Much more important are the behavioral implications drawn from surface material. I am not sure we can cite the first attempts at interpreting prehistory from the surface manifestations of the archaeological record, but a flurry of such approaches proliferated in the 1970s and beyond (Dunnell and Dancey 1983; Ebert 1992; Foley 1981).  Off-site archaeology, non-site archaeology, later morphing into landscape archaeology all deal strictly with surface archaeological record to aid in understanding the past. With the current paper, Daffara and colleagues (2024) are clearly in this camp. Although still not widely accepted, it is clear that some behaviors (parts of systems) can only be approached from surface archaeological record. It is very unlikely that a future archaeologist will be able to excavate an entire human social/cultural system; people moving from season to season, creating multiple long and short term camps, travelling, procuring resources, etc. To excavate an entire system one would need to excavate 20,000 km2 or some similarly impossible task. Even if it was physically possible to excavate such an enormous area, it is very likely that some of contextual elements of any such system will be surface manifestations. 

Without belaboring the point, surface archaeological record yields data like any other archaeological record. We must contextual the archaeological artifacts or features weather they come from surface or below. Daffara and colleagues show us that we can learn about deep prehistory of northern Italy, with collections that were unsystematically collected, biased by agricultural as well as other land deformations agents. They carefully describe the regional prehistory as we know it, in particular specific well documented sites and assemblages as a means of applying such knowledge to less well controlled or uncontrolled collections.

 

References

Binford, L., Binford, R. S. R., Whallon, R. and Hardin, M. A. (1970). Archaeology of Hatchery West. Memoirs of the Society for American Archaeology, No. 24, Washington D.C.

Daffara, S., Giraudi, C., Berruti, G. L. F., Caracausi, S. and Garanzini, F. (2024). First evidence of a Palaeolithic frequentation of the Po plain in Piedmont: the case of Trino (north-western Italy), OSF Preprints, pz4uf, ver. 6 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.31219/osf.io/pz4uf

Dunnell, R. C. and Dancey, W. S. (1983). The siteless survey: a regional scale data collection strategy. In Advances in Archaeological Method and Theory, vol. 6, edited by Michael B. Schiffer, pp. 267-287. Academic Press, New York.

Ebert, J. I. (1992). Distributional Archaeology. University of New Mexico Press, Albuquerque.

Foley, R. A. (1981). Off site archaeology and human adaptation in eastern Africa: An analysis of regional artefact density in the Amboseli, Southern Kenya. British Archaeological Reports International Series 97. Cambridge Monographs in African Archaeology 3. Oxford England.

Kidder, A. V. (1924). An Introduction to the Study of Southwestern Archaeology, With a Preliminary Account of the Excavations at Pecos. Papers of the Southwestern Expedition, Phillips Academy, no. 1. New Haven, Connecticut.

Kidder, A. V. (1931). The Pottery of Pecos, vol. 1. Papers of the Southwestern Expedition, Phillips Academy. New Haven, Connecticut.

Nelson, N. (1916). Chronology of the Tano Ruins, New Mexico. American Anthropologist 18(2):159-180.

First evidence of a Palaeolithic occupation of the Po plain in Piedmont: the case of Trino (north-western Italy)Sara Daffara, Carlo Giraudi, Gabriele L.F. Berruti, Sandro Caracausi, Francesca Garanzini<p>The Trino hill is an isolated relief located in north-western Italy, close to Trino municipality. The hill was subject of multidisciplinary studies during the 1970s, when, because of quarrying and agricultural activities, five concentrations of...Lithic technology, Middle PalaeolithicMarcel Kornfeld2023-10-04 16:58:19 View
20 Feb 2024
article picture

Understanding Archaeological Site Topography: 3D Archaeology of Archaeology

Rewriting Archaeological Narratives: Archaeology of Archaeology through 3D Site Topography Recording

Recommended by ORCID_LOGO based on reviews by Geert Verhoeven, Jesús García-Sánchez and Catherine Scott

Even though applications of 3D recording have existed in archaeology for a long time, it is only since the early 2000s that this field of research has become mainstream thanks to technological advances, and the availability of low-cost sensors and image-based modelling software. This has led to significant changes in the way archaeological sites are documented. This paper entitled "Understanding Archaeological Site Topography: 3D Archaeology of Archaeology" by Jitte Waagen & Gert Jan van Wijngaarden (2024) presents an overview of the current developments in the application possibilities of 3D site topography recording in archaeology. The paper is the result of the round table discussion "Understanding Archaeological Site Topography: 3D Archaeology of Archaeology" at the CAA conference on 5 April 2023 in Amsterdam, with contributions from Radu Brunchi, Nicola Lercari, Joep Orbons, Davide Tanasi, Alicia Walsh, Pawel Wolf and Teagan Zoldoske.

The paper starts with a discussion of the Amsterdam Troy Project (ATP). In the frame of the ATP, the rich history of archaeological activity (over 150 years of fieldwork) at Troy is being studied to explore how previous archaeological research has helped to shape the current topography of the site and how these earlier research activities, embedded in their contemporary theoretical frameworks, have determined our understanding of the site (see Murray and M. Spriggs 2017, Carver 2011 for the influence of theory on archaeological fieldwork and archaeology as a discipline), the so-called 'Archaeology of Archaeology' approach. In addition to studying previous research records and re-excavating old excavation trenches, a central element of the project is the 3D recording of the past and present topography of the site in order to reconstruct the archaeological research activities at the site and their impact on the archaeological landscape.

The paper focuses on current trends in 3D recording of archaeological site topography and discusses three main areas where 3D recording of archaeological site topography can contribute to the "Archaeology of Archaeology" approach: (1) monitoring the topography of sites for preservation, conservation, research and dissemination purposes; (2) reconstructing, reevaluating and reinterpreting past archaeological research efforts; and (3) archiving in a 4D (GIS) environment. This is done using the example of the Amsterdam Troy project and comparing it with other projects using similar methods and approaches. Using these case studies, the authors effectively discuss the impact of these technologies on the understanding of the topography of archaeological sites and how 3D recording can enhance archaeological research methodologies and interpretations, for example, by not using such 3D approaches as a stand-alone product but integrating them with available information from previous research activities. They also recognise the limitations and challenges involved, such as the need for customised data acquisition strategies and the lack of ready-made software solutions for developing comprehensive data management strategies.

One topic that could have been covered in more detail is how 3D site topography recording (and 3D recording in general) is affected by current theoretical developments in archaeology. Like any other archaeological fieldwork or data collection approach, it is a child of its time. Decisions such as what to record, how to record, what to store, how to store, what to visualise, and how to visualise influence our understanding of archaeological sites (Ward 2022). This minor critical reflection aside, the paper makes a timely and significant contribution to archaeology by addressing current trends and the limitations of the increasingly widespread use of 3D site topography recording technologies.

References

Carver, G. (2011). Reflections on the archaeology of archaeological excavation, Archaeological Dialogues 18(1), pp. 18–26. https://doi.org/10.1017/S1380203811000067

Murray, T. and Spriggs, M. (2017). The historiography of archaeology: exploring theory, contingency and rationality, World Archaeology 49(2), pp. 151–157. https://doi.org/10.1080/00438243.2017.1334583

Ward, C. (2022). Excavating the Archive / Archiving the Excavation: Archival Processes and Contexts in Archaeology, Advances in Archaeological Practice 10(2), pp. 160–176. https://doi.org/10.1017/aap.2022.1

Waagen, J. and van Wijngaarden, G.J. (2024). Understanding Archaeological Site Topography: 3D Archaeology of Archaeology, Zenodo, 10061343, ver. 3 peer-reviewed and recommonded by Peer Community in Archaeology. https://doi.org/10.5281/zenodo.10061343

Understanding Archaeological Site Topography: 3D Archaeology of ArchaeologyWaagen, Jitte & Wijngaarden, Gert Jan van<p>The current ubiquitous use of 3D recording technologies in archaeological fieldwork, for a large part due to the application of budget-friendly (drone) sensors and the availability of many low-cost image-based 3D modelling software packages, ha...Computational archaeology, Remote sensingDevi Taelman2023-10-17 23:03:47 View
02 Mar 2024
article picture

A note on predator-prey dynamics in radiocarbon datasets

A new approach to Predator-prey dynamics

Recommended by ORCID_LOGO based on reviews by Jesús Rodríguez, Miriam Belmaker and 1 anonymous reviewer

Various biological systems have been subjected to mathematical modelling to enhance our understanding of the intricate interactions among different species. Among these models, the predator-prey model holds a significant position. Its relevance stems not only from its application in biology, where it largely governs the coexistence of diverse species in open ecosystems, but also from its utility in other domains. 

Predator-prey dynamics have long been a focal point in population ecology, yet access to real-world data is confined to relatively brief periods, typically less than a century. Studying predator-prey dynamics over extended periods presents challenges due to the limited availability of population data spanning more than a century. The most extensive dataset is the hare-lynx records from the Hudson Bay Company, documenting a century of fur trade [1]. However, other records are considerably shorter, usually spanning decades [2,3]. This constraint hampers our capacity to investigate predator-prey interactions over centennial or millennial scales. 

Marom and Wolkowski [4] propose here that leveraging regional radiocarbon databases offers a solution to this challenge, enabling the reconstruction of predator-prey population dynamics over extensive timeframes. To substantiate this proposition, they draw upon examples from Pleistocene Beringia and the Holocene Judean Desert. This approach is highly relevant and might provide insight into ecological processes occurring at a time scale beyond the limits of current ecological datasets. 

The methodological approach employed in this article proposes that the summed probability distribution (SPD) of predator radiocarbon dates, which reflects changes in population size, will demonstrate either more or less variation than anticipated from random sampling in a homogeneous distribution spanning the same timeframe. A deviation from randomness would imply a covariation between predator and prey populations. This basic hypothesis makes no assumptions about the frequency, mechanism, or cause of predator-prey interactions, as it is assumed that such aspects cannot be adequately tested with the available data. If validated, this hypothesis would offer initial support for the idea that long-term regional radiocarbon data contain signals of predator-prey interactions. This approach could justify the construction of larger datasets to facilitate a more comprehensive exploration of these signal structures.

 

References

[1] Elton, C. and Nicholson, M., 1942. The Ten-Year Cycle in Numbers of the Lynx in Canada. J. Anim. Ecol. 11, 215–244.

[2] Gilg, O., Sittler, B. and Hanski, I., 2009. Climate change and cyclic predator-prey population dynamics in the high Arctic. Glob. Chang. Biol. 15, 2634–2652. https://doi.org/10.1111/j.1365-2486.2009.01927.x

[3] Vucetich, J.A., Hebblewhite, M., Smith, D.W. and Peterson, R.O., 2011. Predicting prey population dynamics from kill rate, predation rate and predator-prey ratios in three wolf-ungulate systems. J. Anim. Ecol. 80, 1236–1245. https://doi.org/10.1111/j.1365-2656.2011.01855.x

[4] Marom, N. and Wolkowski, U. (2024). A note on predator-prey dynamics in radiocarbon datasets, BioRxiv, 566733, ver. 4 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.1101/2023.11.12.566733

A note on predator-prey dynamics in radiocarbon datasetsNimrod Marom, Uri Wolkowski<p>Predator-prey interactions have been a central theme in population ecology for the past century, but real-world data sets only exist for recent, relatively short (&lt;100 years) time spans. This limits our ability to study centennial/millennial...Bioarchaeology, Environmental archaeology, Palaeontology, Paleoenvironment, ZooarchaeologyRuth Blasco2023-12-12 14:37:22 View
10 Jun 2024
article picture

Hypercultural types: archaeological objects in fast times.

The Postmodern Predicament of Type-Thinking in Archaeology

Recommended by ORCID_LOGO, and ORCID_LOGO based on reviews by Gavin Lucas, Miguel John Versluys and Anna S. Beck

“Hypercultural types: archaeological objects in fast times” by A. Ribeiro (1) offers some timely, critical and creative reflections on the manifold struggles of and disappointments in type-thinking and typological approaches in recent archaeological scholarship. Ribeiro insightfully situates what has been identified as a “crisis” in archaeological typo-praxis in the historical conditions of postmodernity and late capitalism themselves. The author thereby attempts what he himself considers “quite hard”, namely “to understand the current Zeitgeist and how it affects how we think and do archaeology” (p. 4). This provides a sort of historical epistemology of the present which can of course only be preliminary and incomplete as it crystallizes, takes shape, and transforms as we write these lines, is available only in fragments and hints, and is generally difficult to talk about and describe as we (the author included) lack critical distance – present-day archaeologists and fellow academics are both enfolded in postmodernity and continue to contribute to its logics and trajectories. Ribeiro’s key argument is provocative as it is interesting: he contends that archaeologists’ difficulties of coming to terms with types and typologies – staple knowledge practices of the discipline ever since – are a symptom of the changing cultural matrix of our times. 

The diagnosis is multilayered and complex, and Ribeiro at times only scratches the surface of what may be at stake here as he openly admits himself. At the core of his proposal is a shift in attention away from classical questions of epistemological rank, which in archaeology have tended to orbit the contentious issue of the reality of types (see also 2). Instead of foregrounding the question of type-realities – whether types, once identified, can be meaningfully said to exist and to represent something significant in the world – archaeologists are urged to recognize that typo-praxis is culturally saturated in at least two profound ways. First, devising and mobilizing types and typologies is a cultural practice itself – it may indeed have long been a foundational ‘cultural technique’ (Kulturtechnik) (3) of archaeology as a disciplined community-venture of methodical knowledge production. Typo-centric understandings of the archaeological record are quite akin to definition-centric apprehensions of the same as in both cases order, discreteness, and one-to-one correspondence are considered overriding epistemic virtues and credible pointers to a subject-independent “reality”. As such, these practices have a location of their own and they may thus notably conflict with the particularities of alternate and ever-mutating phenomenal realities and historical conditions. Discreteness may for instance lose its paradigmatic status as a descriptor of worldly order, and this is precisely what Ribeiro argues to have happened in the wake of postmodern transformations, influentially said to have deeply reconfigured the relation between the local and the global, at times even superseding such distinctions altogether. When coupled to questions of reality, types, in a similar fashion as definitions, quickly become vehicles to affirm epistemic power and knowledge authority and so help certify certain kinds of realities while supressing others. This is the paradox of modernity: to insist on monolithic understandings of the world while professing radical difference. 

Second, and for Ribeiro more importantly, typo-praxis is not just subject to cultural variation and thus by implication is plural, it also always has its proper associated cultural milieu in which it exerts some sort of efficacy, i.e. enables action and insight. Ribeiro maintains that this sort of efficacy has become contentious under postmodern conditions and this is because culture, under the gaze of global consumerism, has lost much of its classical significance, and as “hyperculture” (4) developed new logics, significations, and material culture correspondences, essentially “flattening” the highly textured and differentiated world of modernity (p. 6). Some of these new configurations sharply violate the expectations of traditional views of culture. The postmodern situation has in this way effectively emerged as a resistant force proffering much caution and growing scepticism among archaeologists and other academics alike as received ideas about “types” and “cultures” do not seem to work anymore the same way as before. The credibility of different modes of typo-praxis, archaeological or not, in other words, may depend much more on the cultural ecology of lived experience and contemporary diagnosis than is often realized. With Ribeiro, we may say that culture concepts and type concepts are indeed co-constitutive, and what sort of types and typologies archaeologists can persuasively deploy thus also depends greatly on how we construct the link between culture and type, and how (well) we grapple with our own realities and the lessons we draw from them – yet another important reminder of how our own subjectivities figure in such foundational debates (see esp. 5).

The crisis of typo-praxis in archaeology, then, is intricately linked to the crisis of modernity, broached by Ribeiro with the labels of postmodernity and late capitalism. Upon reflection, this is not surprising at all since Tylor’s (6) influential definition of culture for example, which is extensively referenced in the paper, was both reflective of and conducive to the project of modernity and its distinctive historical formations such as empire and colonialism. Ribeiro reminds us that questions of justification and credibility, be it in the domain of type-thinking or other epistemic contexts, can never be fully divorced from the contemporary situation, and archaeologists thus need to be vigilant observers of the present, too. Typo-praxis ultimately is motivated by and draws authority from what Foucault (7) has called épistémè, the totality of pertinent parameters forming the historical a priori of understanding or the guiding unconsciousness of subjectivity within a given epoch. The crisis of archaeological typo-praxis, in this view, signifies a calling into question of the historical a priori on which much traditional type-work in archaeology was premised. Archaeologists still have to come to terms with the implications and consequences of this assessment. “Hypercultural types: archaeological objects in fast times” offers a first poignant analysis of some of these challenges of postmodern archaeological type-thinking.

 

Bibliography

1. Ribeiro, A. (2024). Hypercultural types: archaeological objects in fast times. Zenodo, 10567441, ver. 3 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.5281/zenodo.10567441

2. Hussain, S. T. (2024). The Loss of Typological Innocence: An Archaeology of Archaeological Typo-Praxis. Zenodo, 10567441. https://doi.org/10.5281/zenodo.10547264

3.  Macho, T. (2013). Second-Order Animals: Cultural Techniques of Identity and Identification. Theory, Culture & Society 30, 30–47. https://doi.org/10.1177/0263276413499189

4. Han, B.-C. (2022). Hyperculture: culture and globalization (Polity Press).

5. Frank, A., Gleiser, M. and Thompson, E. (2024). The blind spot: why science cannot ignore human experience (The MIT Press). https://doi.org/10.7551/mitpress/13711.001.0001

6. E. B. Tylor, E. B. (1871). Primitive Culture: Researches Into the Development of Mythology, Philosophy, Religion, Art, and Custom (J. Murray).

7.  Foucault, M. (2007). The order of things: an archaeology of the human sciences, Repr (Routledge).

Hypercultural types: archaeological objects in fast times. Artur Ribeiro<p>Although artifact typologies still play a big role in archaeology, they have certainly lost some repute in recent decades. More than just a collection of items with similar attributes, typologies are a reflection of cultural behaviour and pract...Theoretical archaeologyShumon Tobias Hussain2024-01-25 13:40:08 View
02 Nov 2020
article picture

Probabilistic Modelling using Monte Carlo Simulation for Incorporating Uncertainty in Least Cost Path Results: a Roman Road Case Study

A probabilistic method for Least Cost Path calculation.

Recommended by based on reviews by Georges Abou Diwan and 1 anonymous reviewer

The paper entitled “Probabilistic Modelling using Monte Carlo Simulation for Incorporating Uncertainty in Least Cost Path Results: a Roman Road Case Study” [1] submitted by J. Lewis presents an innovative approach to applying Least Cost Path (LCP) analysis to incorporate uncertainty of the Digital Elevation Model used as the topographic surface on which the path is calculated.

The proposition of using Monte Carlo simulations to produce numerous LCP, each with a slightly different DEM included in the error range of the model, allows one to strengthen the method by proposing a probabilistic LCP rather than a single and arbitrary one which does not take into account the uncertainty of the topographic reconstruction. This new method is integrated in the R package leastcostpath [2].

The author tests the method using a Roman road built along a ridge in Cumbria, England. The integration of the uncertainty of the DEM, thanks to Monte Carlo simulations, shows that two paths could have the same probability to be the real LCP. One of them is indeed the path that the Roman road took. In particular, it is one of two possibilities of LCP in the south to north direction.

This new probabilistic method therefore strengthens the reconstruction of past pathways, while also allowing new hypotheses to be tested, and, in this case study, to suggest that the northern part of the Roman road’s location was selected to help the northward movements.

[1] Lewis, J., 2020. Probabilistic Modelling using Monte Carlo Simulation for Incorporating Uncertainty in Least Cost Path Results: a Roman Road Case Study. SocArXiv, mxas2, ver 17 peer-reviewed and recommended by PCI Archaeology, 10.31235/osf.io/mxas2.

[2] Lewis, J., 2020. leastcostpath: Modelling Pathways and Movement Potential Within a Landscape. R package. Version 1.7.4.

Probabilistic Modelling using Monte Carlo Simulation for Incorporating Uncertainty in Least Cost Path Results: a Roman Road Case StudyJoseph Lewis<p>The movement of past peoples in the landscape has been studied extensively through the use of Least Cost Path (LCP) analysis. Although methodological issues of applying LCP analysis in Archaeology have frequently been discussed, the effect of v...Spatial analysisOtis Crandell Adam Green, Georges Abou Diwan2020-08-05 12:10:46 View
23 May 2024
article picture

The contribution of Mediterranean connectivity to morphological variability in Iron Age sheep of the Eastern Mediterranean

Exploring eastern Mediterranean Iron Age coastal connections through sheep astragali using geometric morphometrics

Recommended by ORCID_LOGO based on reviews by 4 anonymous reviewers

It currently seems obvious that the Mediterranean basin is a place of great exchanges of cultures, populations and goods. Although studies have focused quite extensively on the archaeology of maritime exchanges [1–3], it is challenging to assess archaeologically to what extent these networks had an influence on the biology of domesticated animals in the past, or even if animals were part of the trip. The question of past populations establishing extensive connections in the Mediterranean basin during the Iron Age and Persian period and especially, if these population exchange livestock and how these connections contributed to the animals phenotype or morphotype diversity is still difficult to document in the (zoo)archaeological record. These are amongst the questions Harding et al. [4] are making an attempt at documenting. Focusing on archaeological deposits from Cyprus and Israel in the eastern part of the Mediterranean basin, they use sheep astragali as a proxy to explore the potential connections that might have existed between evolution of the animals’ morphology and exchanges through sea travel. Postulating that animals from inland sites should have variant morphology from those of coastal sites due to more intensive exchanges for the latter, mainly because of the incorporation of non-native animals, they conducted geometric morphometrics analyses to make an attempt at documenting the phenomenon. Observing changes in size and shape, but also an increased morphological variability within the assemblages from coastal sites, they nicely discuss and put their results in perspectives with the archaeological record and literature [5,6]. Although, as they acknowledge, their sample size is rather limited to draw any general conclusion, this paper sheds new lights on the influence of maritime transport and its influence over domesticated sheep diversity between Cyprus and the southern Levant, paving the way for future studies.

References
1.     Leidwanger, J. and Knappett, C. (2018). Maritime Networks in the Ancient Mediterranean World. (Cambridge University Press). https://doi.org/10.1017/9781108555685
2.     Leidwanger, J. (2020). Roman Seas: A Maritime Archaeology of Eastern Mediterranean Economies. (Oxford University Press). https://doi.org/10.1093/oso/9780190083656.001.0001
3.     Bernard Knapp, A., Russell, A. and van Dommelen, P. (2022). Cyprus, Sardinia and Sicily: A Maritime Perspective on Interaction, Connectivity and Imagination in Mediterranean Prehistory. Cambridge Archaeological Journal 32, 79–97. https://doi.org/10.1017/S0959774321000330
4.     Harding, S. A., Hadjikoumis, A., Vermeersch, S., Shafir, R. and Marom, N. (2024) The contribution of Mediterranean connectivity to morphological variability in Iron Age sheep of the Eastern Mediterranean. bioRxiv2022.12.24.521859 https://doi.org/10.1101/2022.12.24.521859.
5.     Price, M. D., Perry-Gal, L. and Reshef, H. (2023). The Southern Levantine pig from domestication to Romanization: A biometrical approach. J. Archaeol. Sci. 157, 105828. https://doi.org/10.1016/j.jas.2023.105828
6.     Vigne, J., Zazzo, A., Cucchi, T., Briois, F. and Guilaine, J. (2014). The transportation of mammals to Cyprus shed light on early voyaging and boats in the mediterranean sea. Eurasian Prehistory 10, 157–176.

The contribution of Mediterranean connectivity to morphological variability in Iron Age sheep of the Eastern MediterraneanSierra A. Harding, Angelos Hadjikoumis, Shyama Vermeersch, Nimrod Marom<p>The movement of livestock across the Mediterranean is well-documented in the Neolithic era, but its significance during subsequent periods has received less attention. This study explores potential evidence for maritime connections between shee...Bioarchaeology, Mediterranean, ZooarchaeologyLouise Le MeillourAnonymous2023-12-07 10:10:34 View
14 Nov 2023
article picture

Student Feedback on Archaeogaming: Perspectives from a Classics Classroom

Learning with Archaeogaming? A study based on student feedback

Recommended by ORCID_LOGO based on reviews by Jeremiah McCall and 1 anonymous reviewer

This paper (Stephan 2023) is about the use of video games as a pedagogical tool in class. Instead of taking the perspective of a lecturer, the author seeks the student’s perspectives to evaluate the success of an interactive teaching method at the crossroads of history, archaeology, and classics. The paper starts with a literature review, that highlights the intensive use of video games among college students and high schoolers as well as the impact video games can have on learning about the past. The case study this paper is based on is made with the game Assassin’s Creed: Odyssey, which is introduced in the next part of the paper as well as previous works on the same game. The author then explains his method, which entailed the tasks students had to complete for a class in classics. They could either choose to play a video game or more classically read some texts. After the tasks were done, students filled out a 14-question-survey to collect data about prior gaming experience, assignment enjoyment, and other questions specific to the assignments.

The results were based on only a fraction of the course participants (n=266) that completed the survey (n=26), which is a low number for doing statistical analysis. Besides some quantitative questions, students had also the possibility to freely give feedback on the assignments. Both survey types (quantitative answers and qualitative feedback) solely relied on the self-assessment of the students and one might wonder how representative a self-assessment is for evaluating learning outcomes. Both problems (size of the survey and actual achievements of learning outcomes) are getting discussed at the end of the paper, that rightly refers to its results as preliminary. I nevertheless think that this survey can help to better understand the role that video games can play in class. As the author rightly claims, this survey needs to be enhanced with a higher number of participants and a better way of determining the learning outcomes objectively. This paper can serve as a start into how we can determine the senseful use of video games in classrooms and what students think about doing so.

References
Stephan, R. (2023). Student Feedback on Archaeogaming: Perspectives from a Classics Classroom, Zenodo, 8221286, ver. 6 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.5281/zenodo.8221286
Student Feedback on Archaeogaming: Perspectives from a Classics ClassroomStephan, Robert<p>This study assesses student feedback from the implementation of Assassin’s Creed: Odyssey as a teaching tool in a lower level, general education Classics course (CLAS 160B1 - Meet the Ancients: Gateway to Greece and Rome). In this course, which...Antiquity, Classic, MediterraneanSebastian HageneuerAnonymous, Jeremiah McCall2023-08-07 16:45:31 View
01 Dec 2022
article picture

Surface texture analysis in Toothfrax and MountainsMap® SSFA module: Different software packages, different results?

An important comparison of software for Scale Sensitive Fractal Analysis : are ancient and new results compatible?

Recommended by ORCID_LOGO and ORCID_LOGO based on reviews by Antony Borel and 2 anonymous reviewers

The community of archaeologists, bioanthropologist and paleontologists relying on tools use-wear and dental microwear has grown in the recent years, mainly driven by the spread of confocal microscopes in the laboratories. If the diversity of microscopes is quite high, the main software used for 3D surface texture data analysis are mostly different versions of the same Mountains Map core. In addition to this software, since the beginning of 3D surface texture analysis in dental microwear, surface sensitive fractal analysis (SSFA) initially developed for industrial research (Brown & Savary, 1991) have been performed in our disciplines with the Sfrax/Toothfrax software for two decades (Ungar et al., 2003). This software being discontinued, these calculations have been integrated to the new versions of Mountains Map, with multi-core computing, full integration in the software and an update of the calculation itself.

New research based on these standard parameters of surface texture analysis will be, from now on, mainly calculated with this new add-on of Mountains Map, and will be directly compared with the important literature based on the previous software. The question addressed by Calandra et al. (2022), gathering several prominent researchers in this domain including the Mountains Map developer F. Blateyron, is key for the future research: can we directly compare SSFA results from both software?

Thanks to a Bayesian approach to this question, and comparing results calculated with both software on three different datasets (two on dental microwear, one on lithic raw materials), the authors show that the two software gives statistically different results for all surface texture parameters tested in the paper. Nevertheless, applying the new calculation to the datasets, they also show that the results published in original studies with these datasets would have been similar. Authors also claim that in the future, researchers will need to re-calculate the fractal parameters of previously published 3D surfaces and cannot simply integrate ancient and new data together.

We also want to emphasize the openness of the work published here. All datasets have been published online and will be probably very useful for future methodological works. Authors also published their code for statistical comparison of datasets, and proposed a fully reproducible article that allowed the reviewers to check the content of the paper, which can also make this article of high interest for student training.

This article is therefore a very important methodological work for the community, as noted by all three reviewers. It will certainly support the current transition between the two software packages and it is necessary that all surface texture specialists take these results and the recommendation of authors into account: calculate again data from ancient measurements, and share the 3D surface measurements on open access repositories to secure their access in the future.

References

Brown CA, and Savary G (1991) Describing ground surface texture using contact profilometry and fractal analysis. Wear, 141, 211–226. https://doi.org/10.1016/0043-1648(91)90269-Z

Calandra I, Bob K, Merceron G, Blateyron F, Hildebrandt A, Schulz-Kornas E, Souron A, and Winkler DE (2022) Surface texture analysis in Toothfrax and MountainsMap® SSFA module: Different software packages, different results? Zenodo, 7219877, ver. 4 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.5281/zenodo.7219877

Ungar PS, Brown CA, Bergstrom TS, and Walker A (2003) Quantification of dental microwear by tandem scanning confocal microscopy and scale-sensitive fractal analyses. Scanning: The Journal of Scanning Microscopies, 25, 185–193. https://doi.org/10.1002/sca.4950250405

Surface texture analysis in Toothfrax and MountainsMap® SSFA module: Different software packages, different results?Ivan CALANDRA, Konstantin BOB, Gildas MERCERON, François BLATEYRON, Andreas HILDEBRANDT, Ellen SCHULZ-KORNAS, Antoine SOURON, Daniela E. WINKLER<p>The scale-sensitive fractal analysis (SSFA) of dental microwear textures is traditionally performed using the software Toothfrax. SSFA has been recently integrated to the software MountainsMap® as an optional module. Meanwhile, Toothfrax suppor...Computational archaeology, Palaeontology, TraceologyAlain QueffelecAnonymous, John Charles Willman, Antony Borel2022-07-07 09:58:50 View
21 Mar 2023
article picture

Archaeology, Typology and Machine Epistemology

Automation and Novelty –Archaeocomputational Typo-Praxis in the Wake of the Third Science Revolution

Recommended by ORCID_LOGO, and ORCID_LOGO based on reviews by Rachel Crellin and 1 anonymous reviewer

“Archaeology, Typology and Machine Epistemology” submitted by G. Lucas (1) offers a refreshing and welcome reflection on the role of computer-based practice, type-thinking and approaches to typology in the age of big data and the widely proclaimed ‘Third Science Revolution’ (2–4). At the annual meeting of the EAA in Maastricht in 2017, a special thematic block was dedicated to issues and opportunities linked to the Third Science Revolution in archaeology “because of [its] profound and wide ranging impact on practice and theory in archaeology for the years to come” (5). Even though the Third Science Revolution, as influentially outlined by Kristiansen in 2014 (2), has occasionally also been met with skepticism and critique as to its often implicit scientism and epistemological naivety (6–8), archaeology as a whole seems largely euphoric as to the promises of the advancing ‘revolution’. As Lucas perceptively points out, some even regard it as the long-awaited opportunity to finally fulfil the ambitions and goals of Anglophone processualism. The irony here, as Lucas rightly notes, is that early processualists initially foregrounded issues of theory and scientific epistemology, while much work conducted under the banner of the Third Science Revolution, especially within its computational branches, does not. Big data advocates have echoed Anderson’s much-cited “end of theory” (9) or at least emphatically called for an ‘empirization’ and ‘computationalization’ of theory, often under the banner of ‘data-driven archaeology’ (10), yet typically without much specification of what this is supposed to mean for archaeological theory and reflexivity. The latter is indeed often openly opposed by archaeological Third Science Revolution enthusiasts, arguably because it is viewed as part of the supposedly misguided ‘post-modernist’ project.

Lucas makes an original meta-archaeological contribution here and attempts to center the epistemological, ontological and praxeological dimensions of what is actually – in situated archaeological praxis and knowledge-production – put at stake by the mobilization of computers, algorithms and artificial intelligence (AI), including its many but presently under-reflected implications for ordering practices such as typologization. Importantly, his perspective thereby explicitly and deliberately breaks with the ‘normative project’ in traditional philosophy of science, which sought to nail down a universal, prescriptive way of doing science and securing scientific knowledge. He instead focuses on the practical dimensions and consequences of computer-reliant archaeologies, what actually happens on the ground as researchers try to grapple with the digital and the artefactual and try to negotiate new insights and knowledge, including all of the involved messiness – thereby taking up the powerful impetus of the broader practice turn in interdisciplinary science studies and STS (Science and Technology Studies (11)) (12–14), which have recently also re-oriented archaeological self-observation, metatheory and epistemology (15). This perspective on the dawning big data age in archaeology and incurred changes in the status, nature and aims of type-thinking produces a number of important insights, which Lucas fruitfully discusses in relation to promises of ‘automation’ and ‘novelty’ as these feature centrally in the rhetorics and politics of the Third Science Revolution. 

With regard to automation, Lucas makes the important point that machine or computer work as championed by big data proponents cannot adequately be qualified or understood if we approach the issue from a purely time-saving perspective. The question we have to ask instead is what work do machines actually do and how do they change the dynamics of archaeological knowledge production in the process? In this optic, automation and acceleration achieved through computation appear to make most sense in the realm of the uncontroversial, in terms of “reproducing an accepted way of doing things” as Lucas says, and this is precisely what can be observed in archaeological practice as well. The ramifications of this at first sight innocent realization are far-reaching, however. If we accept the noncontroversial claim that automation partially bypasses the need for specialists through the reproduction of already “pre-determined outputs”, automated typologization would primarily be useful in dealing with and synthesizing larger amounts of information by sorting artefacts into already accepted types rather than create novel types or typologies. If we identity the big data promise at least in part with automation, even the detection of novel patterns in any archaeological dataset used to construct new types cannot escape the fact that this novelty is always already prefigured in the data structure devised. The success of ‘supervised learning’ in AI-based approaches illustrates this. Automation thus simply shifts the epistemological burden back to data selection and preparation but this is rarely realized, precisely because of the tacit requirement of broad non-contentiousness. 

Minimally, therefore, big data approaches ironically curtail their potential for novelty by adhering to conventional data treatment and input formats, rarely problematizing the issue of data construction and the contested status of (observational) data themselves. By contrast, they seek to shield themselves against such attempts and tend to retain a tacit universalism as to the nature of archaeological data. Only in this way is it possible to claim that such data have the capacity to “speak for themselves”. To use a concept borrowed from complexity theory, archaeological automation-based type-construction that relies on supposedly basal, incontrovertible data inputs can only ever hope to achieve ‘weak emergence’ (16) – ‘strong emergence’ and therefore true, radical novelty require substantial re-thinking of archaeological data and how to construct them. This is not merely a technical question as sometimes argued by computational archaeologies – for example with reference to specifically developed, automated object tracing procedures – as even such procedures cannot escape the fundamental question of typology: which kind of observations to draw on in order to explore what aspects of artefactual variability (and why). The focus on readily measurable features – classically dimensions of artefactual form – principally evades the key problem of typology and ironically also reduces the complexity of artefactual realities these approaches assert to take seriously. The rise of computational approaches to typology therefore reintroduces the problem of universalism and, as it currently stands, reduces the complexity of observational data potentially relevant for type-construction in order to enable to exploration of the complexity of pattern. It has often been noted that this larger configuration promotes ‘data fetishism’ and because of this alienates practitioners from the archaeological record itself – to speak with Marxist theory that Lucas briefly touches upon. We will briefly return to the notion of ‘distance’ below because it can be described as a symptomatic research-logical trope (and even a goal) in this context of inquiry. 

In total, then, the aspiration for novelty is ultimately difficult to uphold if computational archaeologies refuse to engage in fundamental epistemological and reflexive self-engagement. As Lucas poignantly observes, the most promising locus for novelty is currently probably not to be found in the capacity of the machines or algorithms themselves, but in the modes of collaboration that become possible with archaeological practitioners and specialists (and possibly diverse other groups of knowledge stakeholders). In other words, computers, supercomputers and AI technologies do not revolutionize our knowledge because of their superior computational and pattern-detection capacities – or because of some mysterious ‘superintelligence’ – but because of the specific ‘division of labour’ they afford and the cognitive challenge(s) they pose. Working with computers and AI also often requires to ask new questions or at least to adapt the questions we ask. This can already be seen on the ground, when we pay attention to how machine epistemologies are effectively harnessed in archaeological practice (and is somewhat ironic given that the promise of computational archaeology is often identified with its potential to finally resolve "long-standing (old) questions"). The Third Science Revolution likely prompts a consequential transformation in the structural and material conditions of the kinds of ‘distributed’ processes of knowledge production that STS have documented as characteristic for scientific discoveries and knowledge negotiations more generally (14, 17, 18). This ongoing transformation is thus expected not only to promote new specializations with regard to the utilization of the respective computing infrastructures emerging within big data ecologies but equally to provoke increasing demand for new ways of conceptualizing observations and to reformulate the theoretical needs and goals of typology in archaeology. The rediscovery of reflexivity as an epistemic virtue within big data debates would be an important step into this direction, as it would support the shared goal of achieving true epistemic novelty, which, as Lucas points out, is usually not more than an elusive self-declaration. Big data infrastructures require novel modes of human-machine synergy, which simply cannot be developed or cultivated in an atheoretical and/or epistemological disinterested space. 

Lucas’ exploration ultimately prompts us to ask big questions (again), and this is why this is an important contribution. The elephant in the room, of course, is the overly strong notion of objectivity on which much computational archaeology is arguably premised – linked to the vow to eventually construct ‘objective typologies’. This proclivity, however, re-tables all the problematic debates of the 1960s and – to speak with the powerful root metaphor of the machine fueling much of causal-mechanistic science (19, 20) – is bound to what A. Wylie (21) and others have called the ‘view from nowhere’. Objectivity, in this latter view, is defined by the absence of positionality and subjectivity – chiefly human subjectivity – and the promise of the machine, and by extension of computational archaeology, is to purify and thus to enhance processes of knowledge production by minimizing human interference as much as possible. The distancing of the human from actual processes of data processing and inference is viewed as positive and sometimes even as an explicit goal of scientific development. Interestingly, alienation from the archaeological record is framed as an epistemic virtue here, not as a burden, because close connection with (or even worse, immersion in) the intricacies of artefacts and archaeological contexts supposedly aggravates the problem of bias. The machine, in this optic, is framed as the gatekeeper to an observer-independent reality – which to the backdoor often not only re-introduces Platonian/Aristotelian pledges to a quasi-eternal fabric of reality that only needs to be “discovered” by applying the right (broadly nonhuman) means, it is also largely inconsistent with defendable and currently debated conceptions of scientific objectivity that do not fall prey to dogma.  

Furthermore, current discussions on the open AI ChatGPT have exposed the enormous and still under-reflected dangers of leaning into radical renderings of machine epistemology: precisely because of the principles of automation and the irreducible theory-ladenness of all data, ecologies such as ChatGPT tend to reinforce the tacit epistemological background structures on which they operate and in this way can become collaborators in the legitimization and justification of the status quo (which again counteracts the potential for novelty) – they reproduce supposedly established patterns of thought. This is why, among other things, machines and AI can quickly become perpetuators of parochial and neocolonial projects – their supposed authority creates a sense of impartiality that shields against any possible critique. With Lucas, we can thus perhaps cautiously say that what is required in computational archaeology is to defuse the authority of the machine in favour of a new community archaeology that includes machines as (fallible) co-workers. Radically put, computers and AI should be recognized as subjects themselves, and treated as such, with interesting perspectives on team science and collaborative practice.

 

Bibliography

1. Lucas, G. (2022). Archaeology, Typology and Machine Epistemology. https:/doi.org/10.5281/zenodo.7620824.

2. Kristiansen, K. (2014). Towards a New Paradigm? The Third Science Revolution and its Possible Consequences in Archaeology. Current Swedish Archaeology 22, 11–34. https://doi.org/10.37718/CSA.2014.01.

3. Kristiansen, K. (2022). Archaeology and the Genetic Revolution in European Prehistory. Elements in the Archaeology of Europe. https://doi.org/10.1017/9781009228701

4. Eisenhower, M. S. (1964). The Third Scientific Revolution. Science News 85, 322/332. https://www.sciencenews.org/archive/third-scientific-revolution.

5. The ‘Third Science Revolution’ in Archaeology. http://www.eaa2017maastricht.nl/theme4 (March 16, 2023).

6. Ribeiro, A. (2019). Science, Data, and Case-Studies under the Third Science Revolution: Some Theoretical Considerations. Current Swedish Archaeology 27, 115–132. https://doi.org/10.37718/CSA.2019.06

7. Samida, S. (2019). “Archaeology in times of scientific omnipresence” in Archaeology, History and Biosciences: Interdisciplinary Perspectives, pp. 9–22. https://doi.org/10.1515/9783110616651

8. Sørensen, T. F.. (2017). The Two Cultures and a World Apart: Archaeology and Science at a New Crossroads. Norwegian Archaeological Review 50, 101–115. https://doi.org/10.1080/00293652.2017.1367031

9. Anderson, C. (2008). The end of theory: The data deluge makes the scientific method obsolete. Wired. https://www.wired.com/2008/06/pb-theory/.

10. Gattiglia, G. (2015). Think big about data: Archaeology and the Big Data challenge. Archäologische Informationen 38, 113–124. https://doi.org/10.11588/ai.2015.1.26155

11. Hackett, E. J. (2008). The handbook of science and technology studies, Third edition, MIT Press/Society for the Social Studies of Science.

12. Ankeny, R., Chang, H., Boumans, M. and Boon, M. (2011). Introduction: philosophy of science in practice. Euro Jnl Phil Sci 1, 303. https://doi.org/10.1007/s13194-011-0036-4

13. Soler, L., Zwart, S., Lynch, M., Israel-Jost, V. (2014). Science after the Practice Turn in the Philosophy, History, and Social Studies of Science, Routledge.

14. Latour, B. and Woolgar, S. (1986). Laboratory life: the construction of scientific facts, Princeton University Press.

15. Chapman, R. and Wylie, A. (2016) Evidential reasoning in archaeology, Bloomsbury Academic.

16. Greve, J. and Schnabel, A. (2011). Emergenz: zur Analyse und Erklärung komplexer Strukturen, Suhrkamp.

17. Shapin, S., Schaffer, S. and Hobbes, T. (1985). Leviathan and the air-pump: Hobbes, Boyle, and the experimental life, including a translation of Thomas Hobbes, Dialogus physicus de natura aeris by Simon Schaffer, Princeton University Press.

18. Galison, P. L. and Stump, D. J. (1996).The Disunity of Science: Boundaries, Contexts, and Power, Stanford University Press.

19. Pepper, S. C. (1972). World hypotheses: a study in evidence, 7. print, University of California Press.

20. Hussain, S. T. (2019). The French-Anglophone divide in lithic research: A plea for pluralism in Palaeolithic Archaeology, Open Access Leiden Dissertations. https://hdl.handle.net/1887/69812 

21. A. Wylie, A. (2015). “A plurality of pluralisms: Collaborative practice in archaeology” in Objectivity in Science, pp. 189-210, Springer. https://doi.org/10.1007/978-3-319-14349-1_10

Archaeology, Typology and Machine EpistemologyGavin Lucas<p>In this paper, I will explore some of the implications of machine learning for archaeological method and theory. Against a back-drop of the rise of Big Data and the Third Science Revolution, what lessons can be drawn from the use of new digital...Computational archaeology, Theoretical archaeologyShumon Tobias HussainAnonymous, Rachel Crellin2022-10-31 15:25:38 View
01 Sep 2023
article picture

Zooarchaeological investigation of the Hoabinhian exploitation of reptiles and amphibians in Thailand and Cambodia with a focus on the Yellow-headed tortoise (Indotestudo elongata (Blyth, 1854))

A zooarchaeological perspective on testudine bones from Hoabinhian hunter-gatherer archaeological assemblages in Southeast Asia

Recommended by ORCID_LOGO based on reviews by Noel Amano and Iratxe Boneta

The study of the evolution of the human diet has been a central theme in numerous archaeological and paleoanthropological investigations. By reconstructing diets, researchers gain deeper insights into how humans adapted to their environments. The analysis of animal bones plays a crucial role in extracting dietary information. Most studies involving ancient diets rely heavily on zooarchaeological examinations, which, due to their extensive history, have amassed a wealth of data.

During the Pleistocene–Holocene periods, testudine bones have been commonly found in a multitude of sites. The use of turtles and tortoises as food sources appears to stretch back to the Early Pleistocene [1-4]. More importantly, these small animals play a more significant role within a broader debate. The exploitation of tortoises in the Mediterranean Basin has been examined through the lens of optimal foraging theory and diet breadth models (e.g. [5-10]). According to the diet breadth model, resources are incorporated into diets based on their ranking and influenced by factors such as net return, which in turn depends on caloric value and search/handling costs [11]. Within these theoretical frameworks, tortoises hold a significant position. Their small size and sluggish movement require minimal effort and relatively simple technology for procurement and processing. This aligns with optimal foraging models in which the low handling costs of slow-moving prey compensate for their small size [5-6,9]. Tortoises also offer distinct advantages. They can be easily transported and kept alive, thereby maintaining freshness for deferred consumption [12-14]. For example, historical accounts suggest that Mexican traders recognised tortoises as portable and storable sources of protein and water [15]. Furthermore, tortoises provide non-edible resources, such as shells, which can serve as containers. This possibility has been discussed in the context of Kebara Cave [16] and noted in ethnographic and historical records (e.g. [12]). However, despite these advantages, their slow growth rate might have rendered intensive long-term predation unsustainable.

While tortoises are well-documented in the Southeast Asian archaeological record, zooarchaeological analyses in this region have been limited, particularly concerning prehistoric hunter-gatherer populations that may have relied extensively on inland chelonian taxa. With the present paper Bochaton et al. [17] aim to bridge this gap by conducting an exhaustive zooarchaeological analysis of turtle bone specimens from four Hoabinhian hunter-gatherer archaeological assemblages in Thailand and Cambodia. These assemblages span from the Late Pleistocene to the first half of the Holocene. The authors focus on bones attributed to the yellow-headed tortoise (Indotestudo elongata), which is the most prevalent taxon in the assemblages. The research include osteometric equations to estimate carapace size and explore population structures across various sites. The objective is to uncover human tortoise exploitation strategies in the region, and the results reveal consistent subsistence behaviours across diverse locations, even amidst varying environmental conditions. These final proposals suggest the possibility of cultural similarities across different periods and regions in continental Southeast Asia.

In summary, this paper [17] represents a significant advancement in the realm of zooarchaeological investigations of small prey within prehistoric communities in the region. While certain approaches and issues may require further refinement, they serve as a comprehensive and commendable foundation for assessing human hunting adaptations.

 

References

[1] Hartman, G., 2004. Long-term continuity of a freshwater turtle (Mauremys caspica rivulata) population in the northern Jordan Valley and its paleoenvironmental implications. In: Goren-Inbar, N., Speth, J.D. (Eds.), Human Paleoecology in the Levantine Corridor. Oxbow Books, Oxford, pp. 61-74. https://doi.org/10.2307/j.ctvh1dtct.11

[2] Alperson-Afil, N., Sharon, G., Kislev, M., Melamed, Y., Zohar, I., Ashkenazi, R., Biton, R., Werker, E., Hartman, G., Feibel, C., Goren-Inbar, N., 2009. Spatial organization of hominin activities at Gesher Benot Ya'aqov, Israel. Science 326, 1677-1680. https://doi.org/10.1126/science.1180695

[3] Archer, W., Braun, D.R., Harris, J.W., McCoy, J.T., Richmond, B.G., 2014. Early Pleistocene aquatic resource use in the Turkana Basin. J. Hum. Evol. 77, 74-87. https://doi.org/10.1016/j.jhevol.2014.02.012

[4] Blasco, R., Blain, H.A., Rosell, J., Carlos, D.J., Huguet, R., Rodríguez, J., Arsuaga, J.L., Bermúdez de Castro, J.M., Carbonell, E., 2011. Earliest evidence for human consumption of tortoises in the European Early Pleistocene from Sima del Elefante, Sierra de Atapuerca, Spain. J. Hum. Evol. 11, 265-282. https://doi.org/10.1016/j.jhevol.2011.06.002

[5] Stiner, M.C., Munro, N., Surovell, T.A., Tchernov, E., Bar-Yosef, O., 1999. Palaeolithic growth pulses evidenced by small animal exploitation. Science 283, 190-194. https://doi.org/10.1126/science.283.5399.190

[6] Stiner, M.C., Munro, N.D., Surovell, T.A., 2000. The tortoise and the hare: small-game use, the Broad-Spectrum Revolution, and paleolithic demography. Curr. Anthropol. 41, 39-73. https://doi.org/10.1086/300102

[7] Stiner, M.C., 2001. Thirty years on the “Broad Spectrum Revolution” and paleolithic demography. Proc. Natl. Acad. Sci. U. S. A. 98 (13), 6993-6996. https://doi.org/10.1073/pnas.121176198

[8] Stiner, M.C., 2005. The Faunas of Hayonim Cave (Israel): a 200,000-Year Record of Paleolithic Diet. Demography and Society. American School of Prehistoric Research, Bulletin 48. Peabody Museum Press, Harvard University, Cambridge.

[9] Stiner, M.C., Munro, N.D., 2002. Approaches to prehistoric diet breadth, demography, and prey ranking systems in time and space. J. Archaeol. Method Theory 9, 181-214. https://doi.org/10.1023/A:1016530308865

[10] Blasco, R., Cochard, D., Colonese, A.C., Laroulandie, V., Meier, J., Morin, E., Rufà, A., Tassoni, L., Thompson, J.C. 2022. Small animal use by Neanderthals. In Romagnoli, F., Rivals, F., Benazzi, S. (eds.), Updating Neanderthals: Understanding Behavioral Complexity in the Late Middle Palaeolithic. Elsevier Academic Press, pp. 123-143. ISBN 978-0-12-821428-2. https://doi.org/10.1016/C2019-0-03240-2

[11] Winterhalder, B., Smith, E.A., 2000. Analyzing adaptive strategies: human behavioural ecology at twenty-five. Evol. Anthropol. 9, 51-72. https://doi.org/10.1002/(sici)1520-6505(2000)9:2%3C51::aid-evan1%3E3.0.co;2-7

[12] Schneider, J.S., Everson, G.D., 1989. The Desert Tortoise (Xerobates agassizii) in the Prehistory of the Southwestern Great Basin and Adjacent areas. J. Calif. Gt. Basin Anthropol. 11, 175-202. http://www.jstor.org/stable/27825383

[13] Thompson, J.C., Henshilwood, C.S., 2014b. Nutritional values of tortoises relative to ungulates from the Middle Stone Age levels at Blombos Cave, South Africa: implications for foraging and social behaviour. J. Hum. Evol. 67, 33-47. https://doi.org/10.1016/j.jhevol.2013.09.010

[14] Blasco, R., Rosell, J., Smith, K.T., Maul, L.Ch., Sañudo, P., Barkai, R., Gopher, A. 2016. Tortoises as a Dietary Supplement: a view from the Middle Pleistocene site of Qesem Cave, Israel. Quat Sci Rev 133, 165-182. https://doi.org/10.1016/j.quascirev.2015.12.006

[15] Pepper, C., 1963. The truth about the tortoise. Desert Mag. 26, 10-11.

[16] Speth, J.D., Tchernov, E., 2002. Middle Paleolithic tortoise use at Kebara Cave (Israel). J. Archaeol. Sci. 29, 471-483. https://doi.org/10.1006/jasc.2001.0740

[17] Bochaton, C., Chantasri, S., Maneechote, M., Claude, J., Griggo, C., Naksri, W., Forestier, H., Sophady, H., Auertrakulvit, P., Bowonsachoti, J. and Zeitoun, V. (2023) Zooarchaeological investigation of the Hoabinhian exploitation of reptiles and amphibians in Thailand and Cambodia with a focus on the Yellow-headed Tortoise (Indotestudo elongata (Blyth, 1854)), BioRXiv, 2023.04.27.538552 , ver. 3 peer-reviewed and recommended by Peer Community in Archaeology. https://doi.org/10.1101/2023.04.27.538552v3

Zooarchaeological investigation of the Hoabinhian exploitation of reptiles and amphibians in Thailand and Cambodia with a focus on the Yellow-headed tortoise (*Indotestudo elongata* (Blyth, 1854))Corentin Bochaton, Sirikanya Chantasri, Melada Maneechote, Julien Claude, Christophe Griggo, Wilailuck Naksri, Hubert Forestier, Heng Sophady, Prasit Auertrakulvit, Jutinach Bowonsachoti, Valery Zeitoun<p style="text-align: justify;">While non-marine turtles are almost ubiquitous in the archaeological record of Southeast Asia, their zooarchaeological examination has been inadequately pursued within this tropical region. This gap in research hind...Asia, Taphonomy, ZooarchaeologyRuth Blasco Iratxe Boneta, Noel Amano2023-05-02 09:30:50 View